
TECHNISCHE UNIVERSITÄT ILMENAU
Institut für Praktische Informatik und Medieninformatik

Fakultät für Informatik und Automatisierung
Fachgebiet Datenbanken und Informationssysteme

Dissertation

Finding the Right Processor for the Job
—

Co-Processors in a DBMS

vorgelegt von

Dipl.-Inf. Hannes Rauhe

geboren am 5.9.1985 in Meiningen

zur Erlangung des akademischen Grades

Dr.-Ing.

1. Gutachter: Prof. Dr.-Ing. habil. Kai-Uwe Sattler

2. Gutachter: Prof. Dr.-Ing. Wolfgang Lehner

3. Gutachter: Prof. Dr. Guido Moerkotte

urn:nbn:de:gbv:ilm1-2014000240 Ilmenau, den 19. Oktober 2014

Abstract

Today, more and more Database Management Systems (DBMSs) keep the data com-
pletely in memory during processing or even store the entire database there for fast
access. In such system more algorithms are limited by the capacity of the processor, be-
cause the bottleneck of Input/Output (I/O) to disk vanished. At the same time Graphics
Processing Units (GPUs) have exceeded the Central Processing Unit (CPU) in terms of
processing power. Research has shown that they can be used not only for graphic pro-
cessing but also to solve problems of other domains. However, not every algorithm can
be ported to the GPU’s architecture with benefit. First, algorithms have to be adapted
to allow for parallel processing in a Single Instruction Multiple Data (SIMD) style. Sec-
ond, there is a transfer bottleneck because high performance GPUs are connected via
PCI-Express (PCIe) bus.

In this work we explore which tasks can be offloaded to the GPU with benefit. We
show, that query optimization, query execution and application logic can be sped up
under certain circumstances, but also that not every task is suitable for offloading. By
giving a detailed description, implementation, and evaluation of four different examples,
we explain how suitable tasks can be identified and ported.

Nevertheless, if there is not enough data to distribute a task over all available cores on
the GPU it makes no sense to use it. Also, if the input data or the data generate during
processing does not fit into the GPU’s memory, it is likely that the CPU produces a result
faster. Hence, the decision which processing unit to use has to be made at run-time. It
is depending on the available implementations, the hardware, the input parameters and
the input data. We present a self-tuning approach that continually learns which device
to use and automatically chooses the right one for every execution.

iii

Abbreviations

AES Advanced Encryption Standard

AVX Advanced Vector Extensions

BAT Binary Association Table

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

CSV Comma Separated Values

DBMS Database Management System

DCM Decomposed Storage Model

ETL Extract, Transform, Load

FLOPS Floating Point Operations per Second

FPGA Field-Programmable Gate Array

FPU Floating Processing Unit

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

HDD Hard Disk Drive

I/O Input/Output

JIT Just-In-Time

LWC Light-Weight Compression

MMDBMS Main Memory Database System

ME Maximum Entropy

MIC Many Integrated Core

MVS Multivariant Statistics

NOP No Operation

v

ODBC Open Database Connectivity

OLTP Online Transactional Processing

OLAP Online Analytical Processing

ONC Open-Next-Close

OS Operating System

PCIe PCI-Express

PPE PowerPC Processing Element

QEP Query Execution Plan

QPI Intel QuickPath Interconnect

RAM Random Access Memory

RDBMS Relational Database Management System

RDMA Remote Direct Memory Access

SIMD Single Instruction Multiple Data

SMX Streaming Multi Processor

SPE Synergistic Processing Element

SQL Structured Query Language

SSD Solid State Drive

SSE Streaming SIMD Extensions

STL Standard Template Library

TBB Intel’s Thread Building Blocks

UDF User-Defined Function

UVA Universal Virtual Addressing

vi

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 2
1.3. Outline . 4

2. Main Memory Database Management Systems 5
2.1. OLTP and OLAP . 5
2.2. Main Memory DBMS for a Mixed Workload 7

2.2.1. SAP HANA Architecture . 8
2.2.2. Columnar Storage . 10
2.2.3. Compression . 11
2.2.4. Main and Delta Storage . 16

2.3. Related Work: Using Co-processors in a DBMS 17

3. GPUs as Co-Processors 19
3.1. SIMD Processing and Beyond . 19

3.1.1. Flynn’s Taxonomy . 20
3.1.2. Hierarchy of Parallelism—the GPU Architecture 21
3.1.3. Programming Model for GPU Parallelsim 22

3.2. Communication between CPU and GPU 23
3.3. Software Frameworks and Libraries . 24
3.4. Micro-Benchmarks . 26

3.4.1. Memory Bandwidth and Kernel Overhead 26
3.4.2. Single Core Performance . 28
3.4.3. Streaming . 29
3.4.4. Matrix Multiplication . 32
3.4.5. String Processing . 33

3.5. DBMS Functionality on GPUs . 37
3.5.1. Integrating the GPU for Static Tasks into the DBMS 39
3.5.2. Re-Designing Dynamic Tasks for Co-Processors 41
3.5.3. Scheduling . 42

4. Integrating Static GPU Tasks Into a DBMS 43
4.1. GPU Utilization with Application Logic 44

4.1.1. External Functions in IBM DB2 44
4.1.2. K-Means as UDF on the GPU . 45
4.1.3. Implementation . 46

vii

Contents

4.1.4. Evaluation . 49

4.1.5. Conclusion . 50

4.2. GPU-assisted Query Optimization . 52

4.2.1. Selectivity Estimations and Join Paths 52

4.2.2. Maximum Entropy for Selectivity Estimations 53

4.2.3. Implementation of the the Newton Method 54

4.2.4. Evaluation . 55

4.2.5. Conclusion . 56

4.3. The Dictionary Merge on the GPU: Merging Two Sorted Lists 57

4.3.1. Implementation . 57

4.3.2. Evaluation . 61

4.3.3. Conclusion . 62

4.4. Related Work . 62

5. Query Execution on GPUs—A Dynamic Task 65
5.1. In General: Using GPUs for data-intensive problems 66

5.2. JIT Compilation—a New Approach suited for the GPU 67

5.3. A Model for Parallel Query Execution . 69

5.4. Extending the Model for GPU Execution 71

5.4.1. Concrete Example . 73

5.4.2. Limitations of the GPU Execution 75

5.5. Evaluation . 76

5.5.1. Details on Data Structures . 76

5.5.2. Test System and Test Data . 76

5.5.3. GPU and CPU Performance . 77

5.5.4. Number of Workgroups and Threads 78

5.5.5. The Overhead for Using the GPU 79

5.6. Related Work . 79

5.7. Conclusion . 81

6. Automatically Choosing the Processing Unit 83
6.1. Motivation . 83

6.2. Operator Model . 85

6.2.1. Base Model . 85

6.2.2. Restrictions . 87

6.3. Decision Model . 88

6.3.1. Problem Definition . 88

6.3.2. Training and Execution Phase . 89

6.3.3. Model Deployment . 91

6.4. Evaluation . 92

6.4.1. Use Cases for Co-Processing in DBMS 92

6.4.2. Implementation and Test Setup . 95

6.4.3. Model Validation . 96

6.4.4. Model Improvement . 97

viii

Contents

6.5. Related Work . 98
6.6. Conclusions . 99

7. Conclusion 101

Bibliography 103

A. Appendix 113
A.1. Hardware Used for Evaluations . 113

ix

1. Introduction

In the 1970s the idea of a database machine was a trending topic in research. The
hardware of these machines was supposed to be built from ground up to serve only one
purpose: efficiently accessing and processing data stored in a Database Management
System (DBMS). One of the common ideas of the different designs proposed was the
usage of a high number of processing units in parallel. The evolution of the Central
Processing Unit (CPU) and disks overtook the development of these database machines
and in the 80s, the idea was declared a failure [11]. Thirty years later researchers again
proposed to use a massively parallel architecture for data processing, but this time, it
was already available: the Graphics Processing Unit (GPU). However, except for some
research systems there is still no major DBMS that runs on GPUs.

We think that the reason for this is the versatility of modern DBMS. An architecture
for DBMS must be able to do every task possible reasonably well, whether it is aggregat-
ing data, simple filtering, processing transactions, complex mathematical operations, or
the collection and evaluation of statistics on the data stored in the system. A specialized
processor may be able to do a subset of these tasks very fast, but then it will fail to
do the rest. The GPU is able to process a huge amount of data in parallel, but it has
problems with short transactions, which are not suitable for parallel processing, because
they require a consistent view on the data.

However, nowadays different processing units are available in one system. In recent
research therefore the focus switched to the usage of heterogeneous hardware and the
concept of co-processing. Instead of calculating all by itself, the CPU orchestrates a
number of different processing units within the system and decides for each task, where
to execute it. The question therefore not longer is: “How does the perfect processor for
a DBMS look?”, but
“Which of the available processor is the right one to use for a certain task?”.

1.1. Motivation

On the one hand there are many different tasks a DBMS has to process to store data and
keep it accessible. There are the operators used for query execution, such as selection,
join, and aggregation with simple or complex predicates. Under the hood the systems
executes much more logic to maintain stored data and collect meta data on how users
access the content. These statistics are used to optimize the query execution; partly
with complex mathematical methods. Additionally, most vendors position their DBMS
more and more as a data management platform that is not only able to execute queries
but any application logic defined by the user as well.

1

1. Introduction

On the other hand every standard PC can be equipped with powerful co-processors,
specialized on a certain domain of algorithms. Almost any modern PC already has a
GPU which is able to solve general purpose algorithms with the help of its massively par-
allel architecture. Additionally, there are Field-Programmable Gate Arrays (FPGAs),
Intel’s Xeon Phi, or IBM’s Cell processor. Of course, any task can be solved by the
CPU, but since its purpose is so generic, other hardware may be

• cheaper,

• more efficient in terms of memory consumption,

• or simply faster

at executing the task. Even if the co-processor is just as good as the CPU for a certain
problem; if it is available in the system anyhow it can be used to free resources on the
CPU for other jobs.

However, in contrast to co-processors that are integrated into the CPU—such as the
Floating Processing Unit (FPU) or cryptography processors, e.g., for accelerating Ad-
vanced Encryption Standard (AES)–the co-processors mentioned in the last paragraph
cannot be used by just re-compiling the code with special instructions. Instead, they
require their own programming model and special compilers. That means that most
algorithms have to be re-written to run on co-processors. This re-write is not trivial,
because especially GPU algorithms require a completely different approach. Since the
prediction of the performance of those new algorithm is impossible due to the complexity
of the hardware, there are three questions to answer:

• Which tasks can be ported to a co-processor and how is this done?

• Which tasks are likely and which are unlikely to benefit from another architecture?

• How can the system automatically decide on the best processing unit to use for a
specific task?

At the moment, the data to be processed by a task usually has to be copied to the
co-processor, so data-intensive tasks are usually unlikely to benefit from the GPU.

However, since we reached a peak of single-thread CPU performance because of
physics [57], CPU vendors are changing their architectures to support for instance vec-
torized and multi-threaded execution. These concepts are already built to an extreme
in GPUs and FPGAs. In heterogeneous architectures, GPUs are integrated into the
CPU, e.g., AMD’s Fusion architecture [14]. Hence, modifications to simple algorithms
or completely new algorithms for co-processor architectures will play a key role in the
future for CPU development as well.

1.2. Contributions

In this thesis we take a deep look into using the GPU as co-processor for DBMS oper-
ations. We compare the architecture and explain, where the GPU is good at and when

2

1.2. Contributions

it is better to use the CPU. By doing a series of micro benchmarks we compare the
performance of a GPU to typical server CPUs. Against popular opinion the GPU is
not necessarily always better for parallel compute-intensive algorithms. Modern server
CPUs provide a parallel architecture with up to 8 powerful cores themselves. With the
help of the benchmarks we point out a few rules of thumb to identify good candidates
for GPU execution.

The reason that the GPU provides so much raw power is that hundreds of cores are
fitted onto one board. These cores are simple and orders of magnitude slower than a
typical CPU core and because of their simplicity they do not optimize the execution
of instructions. Where the CPU uses branch-prediction and out-of-order-execution, on
the GPU each instruction specifies what one core does and when. Additionally porting
an algorithm to the Single Instruction Multiple Data (SIMD) execution model often
involves overhead. Missing optimization and the necessary overhead usually mean that
only a fraction of the theoretical power can actually be used. Hence the code itself has
to be highly optimized for the task. Because of this we have to differentiate between
static tasks that always execute the same code branches in the same order, and dynamic
tasks such as query execution, where modular code blocks are chained and executed
depending on the query.

For static tasks we show candidates from three different classes: application logic,
query optimization, and a maintenance task. While the first two can benefit from the
GPU for certain input parameters, the maintenance task is not only data-intensive but
also not “compatible” to the GPU’s architecture. For dynamic tasks we propose code
generation and Just-In-Time (JIT)-compilation to let the compiler optimize the code for
the specific use case at run-time. In any case: if the input for a task is too small, not all
cores on the GPU can be used and performance is lost. Hence, we have to decide each
time depending on the input whether it is worth using the GPU for the job. In the last
part of this thesis we present a framework which automatically makes a decision based
on predicted run-times for the execution.

We show that

• there is a huge difference between parallel algorithms for the CPU and the GPU.

• application logic can be executed by the DBMS and on the GPU with advantages
from both concepts.

• query optimization can benefit from the performance the GPU provides in combi-
nation with a library for linear algebra.

• there are tasks that simply cannot benefit from the GPU; either because they are
data intensive or because they are just not compatible to the architecture.

• we can execute queries completely on the GPU, but there are limits for what can
be done with our approach.

• the system can learn, when using the co-processor for a certain task is beneficial
and automatically decide, where to execute a task.

3

1. Introduction

In every evaluation we aim for a fair comparison between algorithms optimized for
and running on a modern multi-core CPU against GPU-optimized algorithms. Because
DBMS usually run on server hardware, we use server CPUs and GPUs; details are
explained in Section 6.1 and in the Appendix.

1.3. Outline

In Chapter 2 we start off with explaining the environment for our research: while in
disk-based DBMS most tasks were Input/Output (I/O) bound, Main Memory Database
System (MMDBMS) make stored data available for the CPU with smaller latency and
higher bandwidth. Hence, processing power has a higher impact in these systems and
investigating other processing units makes more sense than before.

The most popular co-processor at the moment, the GPU, is explained in detail in
Chapter 3. We start with the details about its architecture and the way it can be
used by developers. With a series of benchmarks we give a first insight on how a GPU
performs in certain categories compared to a CPU. Based on these findings we explain
the further methodology of our work in Section 3.5. The terms static and dynamic task
are explained there.

In Chapter 4 we take a deep look at candidates of three different classes of static
tasks within a DBMS and explain how these algorithms work and perform on a GPU.
While some application logic and query optimization can benefit from the GPU for
certain input parameters, the maintenance task is not only data-intensive but also not
“compatible” to the GPU’s architecture. Even without the transfer bottleneck, the CPU
would be faster and more efficient in processing.

However, the most important task of any DBMS is query execution, which we consider
to be a dynamic task. Because of the GPU’s characteristics we cannot use the approach
of executing each database operator on its own as explained in Section 5.2. Instead we
use the novel approach of generating code for each individual query and compile it at
run-time. We present the approach, its advantages, especially for the GPU, as well as
its limitations in Chapter 5.

Most tasks are not simply slower or faster on the GPU. Instead, it depends on the
size of the input data and certain parameters that can only be determined at run-time.
Because of the unlimited number of different situations and hardware-combinations we
cannot decide at compile time, when to use which processing unit. The framework HyPE
decides at run-time and is presented in Chapter 6.

4

2. Main Memory Database Management
Systems

Relational Database Management Systems (RDBMSs) today have to serve a rich variety
of purposes. From simple user-administration and profile storage in a web community
forum to complex statistical analysis on costumer and sales data in world-wide acting
corporations anything can be found. For a rough orientation the research community
categorizes scenarios under two different terms: Online Transactional Processing (OLTP)
and Online Analytical Processing (OLAP). Until recently there was no system that could
serve both workloads efficiently. If a user wanted to do both types of queries on the same
data, replication from one system to another was needed. Nowadays, the target of the
major DBMS vendors is to tackle both types efficiently in one system. The bottleneck
of I/O operations in traditional disk-based DBMS makes it impossible to achieve this
goal.

The concept of the MMDBMS eliminates this bottleneck and gives the computational
power of the processor a new higher priority. Because I/O operations are cheaper on
Random Access Memory (RAM), processes that were I/O-bound in disk-based system
are often CPU-bound in MMDBMS. Co-processor provide immense processing speeds
for problems of their domain. Their integration into a MMDBMS is a new chance to
gain better performance for such CPU-bound tasks.

In this chapter, we explain how MMDBMSs work and what possibilities and chal-
lenges arise because of their architecture. In the first section we explain the difference
between OLTP and OLAP workloads, which is necessary for a basic understanding of
the challenges DBMS researchers and vendors face. The following Section 2.2 explains
the recent changes in hardware that explain the rising interest in MMDBMSs. We take
a look at the architecture and techniques used in HANA to support both scenarios,
so-called mixed workloads.

For this thesis we focus on the GPU as co-processor, but there are of course other
candidates. Before we get to the details of GPUs in the next chapter, we take a look at
noticeable attempts that were already made to integrate different types of co-processors
into a DBMS in Section 2.3.

2.1. OLTP and OLAP

Based on characteristics and requirements for a DBMS there are two fundamentally
different workloads: OLTP and OLAP.

A DBMS designed for OLTP must be able to achieve a high throughput of read and—
at the same time—write transactions. It must be able to keep the data in a consistent

5

2. Main Memory Database Management Systems

state at every time and make sure that no data is lost even in case of a power failure or any
other interruption. Additionally, transactions do not interfere in each others processing
and are only visible, when they are completed successfully. These characteristics are
know under the acronym ACID: Atomicity, Consistency, Isolation and Durability [41].
Users and applications that used RDBMSs rely on the systen to act according to these
rules. Typical Structured Query Language (SQL) statements of a OLTP workload are
shown in Listing 2.1. They are a mixture of accessing data with simple filter criteria,
updating existing tuples and the insertion of new records into the system.

Listing 2.1: Typical OLTP queries

1 SELECT * FROM customer

2 WHERE customer_id =12;

3
4 INSERT INTO customer(name , address , city , zip)

5 VALUES("Cust Inc", "Pay Road 5", "Billtown", 555);

6
7 UPDATE customer SET customer_status="gold"

8 WHERE name="Max Mustermann";

The requirements for a OLAP-optimized DBMS are different. Instead of simple and
short transactions, they must support the fast execution of queries that analyze huge
amounts of data. But in contrast to OLTP scenarios the stored data is not or only rarely
changed. Therefore, the ACID rules do not play an important role in analytic scenarios.
Compared to a OLTP scenario there are less queries, but every query accesses large
amounts of data and usually involves much more calculations due to its complexity. A
typical OLAP-query is shown in Listing 2.2.

Listing 2.2: Query 6 of the TPC-H benchmark [100]

1 SELECT sum(l_extendedprice * l_discount) as revenue

2 FROM lineitem

3 WHERE l_shipdate >= date ’:1’

4 AND l_shipdate < date ’:1’ + interval ’1’ year

5 AND l_discount BETWEEN :2 - 0.01 AND :2 + 0.01

6 AND l_quantity < :3;

Although classic RDBMSs support OLTP and OLAP workloads, they are often not
capable of providing an acceptable performance for analytical queries. Especially in
enterprise scenarios another system is used that is optimized solely for OLAP. These
so-called data warehouses use read-optimized data structures to provide fast access to
the stored records. Furthermore, they are optimized to do calculations on/with the data
while scanning it. Because the data structures used do not support fast changes, OLAP
systems perform poorly at update- or write-intensive workloads. Therefore, the data that
was recorded by the OLTP system(s) must be transferred regularly. This happens in
form of batch inserts into the data warehouse. Since this process also involves some form

6

2.2. Main Memory DBMS for a Mixed Workload

of transformation to read-optimized schemes and data structures, it is called Extract,
Transform, Load (ETL) [102]. The batch insert can contain data from a high number
of different system. Their exports are converted and may be pre-processed, e.g., sorted
and aggregated, before they are actually imported into the OLAP system [58].

A typical business example that shows the organization of different DBMS, is a global
supermarket chain. Every product that is sold has to be recorded. However, the trans-
action is not completed when the product is registered by the scanner at checkout, but
when the receipt is printed. Until then it must be possible to cancel the transaction with-
out any change to the inventory or the revenue. Additionally, in every store hundreds
or thousands transaction are made every day. This is a typical OLTP workload for a
DBMS. Similar scenarios can be found at a warehouse, where the goods are distributed
to the stores in the region. Here, every incoming and outgoing product is recorded just
in time. In contrast to that a typical OLAP-query is to find the store with the lowest
profit of a certain region, or the product that creates the highest revenue in a month.
This OLAP workload is usually handled by the data warehouse, which holds the records
of all stores and warehouses.

This solution has disadvantages: since at least two DBMS are involved, there is no
guarantee that data is consistent between both. During the ETL process, it must be
ensured that no records are lost or duplicated. Additionally, because there is not one
single source of truth, every query has to be executed in the right system. But the most
significant disadvantage is that the more sources there are, the longer the ETL process
takes. Hence, the time until the data is available for analysis gets longer, when more
data is recorded. Especially in global companies real-time analytics1 are not available
with this approach [83].

2.2. Main Memory DBMS for a Mixed Workload

Most systems today use Hard Disk Drives (HDDs) as primary storage, because they pro-
vide huge amounts of memory at an affordable price. However, while CPU performance
increased exponentially over the last years, HDD latency decreased and bandwidth in-
creased only slowly. Table 2.1 lists the access latency of every memory type available
in modern server hardware. There is a huge difference between HDD and RAM la-
tency (and bandwidth as well), which is known as the memory gap. Therefore, the
main performance bottleneck for DBMS nowadays (and at least in the last 20 years) is
I/O. The first DBMSs that addressed this problem by holding all data in main mem-
ory while processing queries were available in the 1980s [26]. These MMDBMSs do not
write intermediate results, e.g., joined tables, to disk like traditional disk-based system
and therefore reduce I/O, especially for analytic queries, where intermediate results can
become very large.

In recent years the amount of RAM fitting into a single machine passed the 1 TB mark
and became cheap enough to replace the HDD in most business scenarios. Hence, the

1This has of course nothing to do with the definition of real-time in computer science.

7

2. Main Memory Database Management Systems

L1 Cache ≈4 cycles

L2 Cache ≈10 cycles

L3 Cache ≈40–75 cycles

L3 Cache via Intel QuickPath Interconnect (QPI) ≈100–300 cycles

RAM ≈60 ns

RAM via QPI ≈100 ns

Solid State Drive (SSD) ≈80 000 ns

HDD ≈5 000 000 ns

Table 2.1.: Approximation of latency for memory access (reads) [64, 30, 105]

concept of MMDBMS was extended to not only keep active data in main memory, but
use RAM as primary storage for all data in the system2.

For DBMS vendors this poses a new challenge, because moving the primary storage
to RAM means tuning data structures and algorithms for main memory characteristics
and the second memory gap between CPU-caches and RAM. MMDBMS still need
a persistent storage to prevent data loss in case of a power failure, therefore every
transaction still triggers a write-to-disk operation. Hence, OLTP workloads can by
principle not benefit as much as OLAP, but modern hardware enables these systems to
provide acceptable performance for OLTP as well.

In the next sections we show some of the principle design decisions of relational
MMDBMS on the example of SAP HANA. While other commercial RDBMS started of
as disc-oriented systems and added main memory as primary storage in their products—
e.g., SQLServer with Hekaton [20], DB2 with BLU [86], and Oracle with Times Ten [80]—
HANA is built from the ground up to use main memory as the only primary storage.

2.2.1. SAP HANA Architecture

On the one hand SAP HANA is a standard RDBMS that supports pure SQL and, for
better performance, keeps all data—intermediate results as well as stored data—in main
memory. Hence, the system provides full transactional behavior while being optimized
for analytical workloads. The design supports parallelization ranging from thread and
core level up to distributed setups over multiple machines. On the other hand HANA is
a platform for data processing specialized to the needs of SAP applications [21, 92, 22].

Figure 2.1 shows the general SAP HANA architecture. The core of the DBMS are
the In-Memory Processing engines, where relational data can either be stored row-wise
or column-wise. Data is usually stored in the column store, which is faster for OLAP
scenarios as we will explain in Section 2.2.2. However, in case of clear OLTP workloads,
HANA also provides a row store. The user of the system has to decide, where a table
is stored at creation time, while the system handles the transfer between the storage
engines when a query needs data from both. Hence, the ETL-process is not necessary,

2To emphasize the difference SAP HANA is sometimes called In-Memory DBMS

8

2.2. Main Memory DBMS for a Mixed Workload

Metadata
Manager

MDXSQLScript ...

Execution Engine

Calculation Engine

Optimizer and Plan Generator

Connection and Session Management

SQL

Transaction
Manager

Persistence

Authorization
Manager

In-Memory Processing Engines

Column/Row Engine Graph Engine Text Engine

Business Applications

Logging and Recovery Data Storage

Figure 2.1.: Overview of the SAP HANA DB architecture [22]

resp. transparent to the users of the DBMS. Psaroudakis et al. showed how HANA
handles both types of workloads at the same time [85].

As a data management platform, HANA allows graph data and text data to be stored
in two specialized engines next to relational data. In every case, processing and storage
are focused on main memory. If necessary tables can be unloaded to disk, but have to
be copied to main memory again for processing. Because of this there is no need to
optimized data structures in any way for fast disk access. Instead data structures as
well as algorithms are built to be cache-aware to cope with the second memory gap.
Furthermore, the engines compress the data using a variety of compression schemes. As
we discuss in Section 2.2.3 this not only allows more data to be kept in main memory
but speeds up query execution as well.

Applications communicate with the DBMS with the help of various interfaces. Stan-
dard applications can use the SQL interface for generic data management functionality.
Additionally, SQLScript [9] enables procedural aspects for data processing within the
DBMS. More specialized languages for problems of a certain domain are MDX for pro-
cessing data in OLAP cubes, WIPE to query graphs [90, 89], and even an R integration
for statistics is available [39]. SQL queries are translated into an execution plan by the
plan generator, which is then optimized and executed. Queries from other interfaces
are eventually transformed into the same type of execution plan and executed in the
same engine, but are first described by a more expressive abstract data flow model in
the calculation engine. Independent of the interface, the execution engine handles the
parallel execution and the distribution over several nodes.

On top of the interfaces there is the Component for Connection and Session Manage-
ment, which is responsible for controlling individual connections between the database
layer and the application layer. The authorization manager governs the user’s permis-
sions and the transaction manager implements snapshot isolation or weaker isolation
levels. The metadata manager holds the information about where tables are stored in
which form and on which machine if the system was set up in a distributed landscape.
All data is kept in main memory, but to guarantee durability in case of an (unexpected)

9

2. Main Memory Database Management Systems

 Col1 Col2 Col3
Row 1 A1 A2 A3
Row2 B1 B2 B3
Row3 C1 C2 C3

A1 A2 A3 B1 B2 B3 C1 C2 C3

A1 B1 C1 A2 B2 C2 A3 B3 C3

row-wise

column-wise

Figure 2.2.: Row- vs. column-oriented storage

shutdown data needs to be stored on disk (HDD or SSD) as well. During savepoints and
merge operations (see Section 2.2.4) tables are completely written to disk; in between
updates are logged. In case of a system failure, these logs are replayed to recover the
last committed state [22].

2.2.2. Columnar Storage

Since relations are two-dimensional structures there has to be a form of mapping to store
them in the one-dimensional address space of memory. In general there are two different
forms: either relations are stored row-wise or column-wise.

As shown in Figure 2.2 in row-wise storage all values of a tuple are stored contiguously
in memory. The most significant advantage is that the read access to a complete row as
well the insertion of a new row, which often happens in OLTP scenarios, can be processed
efficiently. In contrast column stores store all values of a column contiguously in mem-
ory. Therefore, access to a single row means collecting data from different positions in
memory. In OLAP scenarios values of single attributes are regularly aggregated, which
means that fast access to the whole column at once is beneficial. When queries access
only a small number of columns in the table columnar storage allows to just ignore the
other columns. Naturally, column stores have the advantage in these situations.

Main memory is still an order of magnitude more expensive than disk. Therefore,
MMDBMSs use compression whenever possible before storing the data. In terms of
compression, the columnar storage has an advantage: the information entropy of data
stored within one column is lower than within one row. Every value is by definition of
the same data type and similar to other values. Lower information entropy directly leads
to better compression ratios [2]. It is easier, for instance, to compress a set of phone
numbers than a set with a phone number, a name and an e-mail address. Additionally,
often there is a default value that occurs in columns at a high frequency.

There are two different data layouts for column stores. MonetDB for instance uses
the Decomposed Storage Model (DCM), which was first described by Copeland and
Khoshafian [16]. Every value stored in the column gets an identifier to connect it with
the other values of the same row, i.e., the row number of every value is explicitly stored.
In MonetDB’s Binary Association Table (BAT) structure, there are special compression
schemes to minimize the overhead of storing this identifier, e.g., by just storing beginning
and end of the range.

The second layout—which is used by HANA—stores every column of a table in the

10

2.2. Main Memory DBMS for a Mixed Workload

same order, so that the position of a value inside the column automatically becomes
the row identifier. While the overhead for the row identifier is not there in this layout,
individual columns cannot be re-ordered, which often is advantageous for compression
algorithms (cf. next Section).

2.2.3. Compression

Compression in DBMSs is a major research topic. Not only does it save memory, it
makes it also possible to gain performance by using compression algorithms that favor
decompression performance over compression ratio [109, 1]. The reason is that, while we
had an exponential rise in processing power for decades, memory bandwidth increased
only slowly and latency for memory access, especially on disk, but also for main memory
has been almost constant for years [83]. The exponential growth in processing power
was possible because transistors became constantly smaller. Therefore the number of
transistors per chip doubled every 18 months. This effect was predicted in the 1960s [69]
and became know as Moore’s law. While the number of transistors directly influences
processing power and memory capacity, it does not necessarily affect memory latency
and bandwidth, neither for disk nor for main memory. Hence, Moore’s law cannot be
applied to these characteristics. There was some growth in bandwidth (for sequential
access!) but especially seek times for hard disks have not changed in years because they
are limited by mechanical components. Main memory development was also slower than
the CPU’s.

Therefore, even in MMDBMS I/O to main memory is the bottleneck in many cases,
e.g., scanning a column while applying filter predicates is memory bound even with
compression [103]. Modern multi-core CPUs are just faster at processing the data than
reading it from memory. By using compression algorithms we do not only keep the
memory footprint small, we also accelerate query performance. This is of course only
true for read-only queries, not for updates. Updates on compressed structures are a
major problem, because they involve decompression, updating de-compressed data and
re-compression of the structure. To prevent this process happening every time a value
is update, they are usually buffered and applied in batches. We describe the details of
this process in Section 2.2.4.

In HANA’s column store different compression schemes are used on top of each other.
We describe the most important ones in the following paragraphs.

Dictionary Encoding

A very common approach to achieve compression in column stores is dictionary or domain
encoding. Every column consists of two data structures as depicted in Figure 2.3: a
dictionary consisting of every value that occurs at least once in the column and an index
vector. The index vector represents the column but stores references to the dictionary
entries, so called value IDs, instead of the actual values.

In many cases the number of distinct values in one column is small compared to the
number of entries in this column. In these cases the compression ratio can be immense.

11

2. Main Memory Database Management Systems

Aachen
Berlin
Eisenach
Erfurt
Fulda
Köln
München
Ulm
Walldorf

7
1
4
3
6
2
5
0
8

D
ic

tio
na

ry

0
0
0
1
2
2
3
3
3
1
4
5
6
7
5
0
8

In
de

x
V

ec
to

r

ValueID

Figure 2.3.: Dictionary compression on the example of a city column

For typical comment columns or alike, in which almost every value is unique, there is
mostly no effect on the memory footprint. If every value is distinct, even more space is
needed.

Although numeric columns do not benefit from this type of compression in terms of
memory usage, HANA stores all regular columns in dictionary encoded form. There
are various reasons for that, e.g., the execution of some query types can be done more
efficiently with the help of the dictionary. Obviously distinct queries can be answered
by just returning the dictionary. Also, query plans for SQL-queries with a group by

clause for example can be optimized better because the maximum number of rows in the
result can be easily calculated because the size of the dictionary is known. But the most
important reason for dictionary encoding is that compression techniques for the index
vector can be applied independently of the type of the column.

Bit-Compression for Index Vectors

In combination with dictionary encoding the most efficient compression algorithm for
the index vector is bit-compression. Usually the value IDs would be stored in a native,
fixed-width type such as integer (or unsigned integer), i.e., every value ID needs 32 bit.
Since we know the maximum value ID vmax that occurs in the index vector—the size
of the dictionary—we also know that all value IDs fit into n = dlog2 vmaxe bit. Hence,
we can just leave out the leading zeros, which makes bit-compression a special form of
prefix-compression. With this approach we do not only achieve a high compression ratio
in most scenarios, but we also gain scan performance. Because we are memory bound
while scanning an uncompressed column and the de-compression of bit-compressed data
can be implemented very efficiently with SIMD-instructions, the scan throughput is
higher with compression [104, 103] than without. Moreover, bit-compression allows
the evaluation of most predicates, e.g., the where-clause of SQL-statements, on-the-fly
without de-compressing the value IDs. The performance depends strongly on the bit-

12

2.2. Main Memory DBMS for a Mixed Workload

case, i.e., the size of one value ID in memory, but even with complex predicates we are
still memory-bound when scanning with one thread only [103].

In contrast to the other compression techniques shown here, bit-compressed data can
never be greater than the uncompressed value IDs. The only draw-back of this form
of compression is that the direct access to a single value requires the decompression of
one block of values. In most cases, however, the initial cache-miss dominates the access
time. Therefore, similar to dictionary encoding this type of compression is used for every
stored index vector in HANA.

Further Light-Weight Compression (LWC) Techniques

Additionally there are other forms of compression techniques used within HANA. One
of the major requirements is that compressed data can be de-compressed fast while
scanning and also while accessing single values, i.e., they are light-weight. Sophisticated
algorithms, such as bzip2 or LZMA usually achieve a better compression ratio, but are
just too slow for query execution. While most of the LWC-techniques work well for
sequential scanning of a column, access times for single values vary.

In Figure 2.4 the used techniques for compression in HANA to date are depicted.
They are explained in detail in [63].

Prefix coding eliminates the first values of the index vector when they are repeated. In
most columns there is no great benefit to use it, except for sorted columns. However, this
compression type introduces almost no overhead and does not affect scan performance.
Therefore, it is often combined with other techniques.

Sparse coding works by removing the most frequent value IDs from the index vector
and managing an additional bit vector, where the positions of removed value IDs are
marked. Especially the default value often occurs in columns, therefore this algorithm
achieves a good compression ratio in most cases. A disadvantage is that direct access
requires the calculation of the value ID’s position in the compressed index vector by
building the prefix sum of the bit vector. Depending on the position of the requested
value ID this leads to a large overhead compared to the simple access.

Run-length encoding (RLE) (slightly modified version of [32]) compresses sequences of
repeating value IDs by only storing the first value of every sequence in the index vector
and the start of each sequence in another vector, which can also be bit-compressed.
While this may achieve good compression ratios for columns, where values are clustered,
there is the possibility that the compressed structure may need even more memory than
the uncompressed index vector. Single access to a value ID at a given position requires
a binary search in the vector that holds the starting positions and can therefore be
expensive.

For cluster coding the index vector is logically split into clusters with a fixed number
of value IDs. If one partition holds only equal value IDs, it is compressed to a single
value ID. A bit vector stores whether the partition is compressed or not. Similar to
RLE this achieves good ratios for clustered values, but the compression is limited by
the chosen cluster size. Like with sparse coding a single lookup requires the calculation
of the prefix sum for the bit vector and can therefore be expensive. Cluster coding can

13

2. Main Memory Database Management Systems

Prefix Coding

Run Length Coding

0
0
0
1
2
2
3
3
3
0

Uncompressed

0
1
2
3
4
5
6
7
8
9

PosIV

1
2
2
3
3
3
0

prefix value:
0

prefix count:
3

IV

0
1
2
3
0

0 3 4 6 9

IV

RLE Start

Sparse Coding

1
2
2
3
3
3

IV

sparse value:
0

Bitvector:
1110000001

Cluster Coding

0
0
0
1
2
2
3
3
3
0

Uncompressed

0
1
2
3
4
5
6
7
8
9

PosIV

0
0
0
1
2
2
3
3
3
0

Uncompressed

0
1
2
3
4
5
6
7
8
9

PosIV

0
0
0
1
2
2
3
3
3
0

Uncompressed

0
1
2
3
4
5
6
7
8
9

PosIV

0
1
2
2
3
0

IV

cluster size:
3

Bitvector:
1010

Figure 2.4.: Compression algorithms for the index vector

14

2.2. Main Memory DBMS for a Mixed Workload

be extended to indirect coding by creating a dictionary for a cluster that contains more
than one value ID.

Except for prefix compression the direct access to the value ID at a given position gets
more expensive the larger the index vector gets. To limit the time needed for such an
access, every compression is applied to blocks of values with a fixed size. This way every
single lookup requires to calculate the right block number and the access to the structure
that stores the compression technique for this block. Afterwards, the block needs to be
de-compressed to access the value. The block-wise approach also has the advantage that
the best compression algorithm can be chosen for parts of the index vector. Overall this
gives a better compression ratio than using one technique for the complete column [63].

Re-Ordering Columns for Better Compression Ratios

All compression techniques shown in the last section do work best for columns that are
sorted by the frequency of their value IDs. Especially having the most frequent value
ID on top is the best situation in every case, because we can combine all techniques
with prefix-coding (of course this is not necessary for RLE). Fortunately, relations do
not guarantee any order. Therefore, HANA is free to re-arrange the rows to gain better
performance or a smaller memory footprint. Of course, the columns cannot be sorted
independently since this would require to map the row number to the position of a value
ID. In most cases this would be more expensive (in terms of memory footprint and
compression) than having no LWC at all. Hence, the system has to determine which
column it sorts for a good performance. Finding the optimal solution for this problem
is NP-complete [5]. Lemke et al [63] propose greedy heuristics to find a near-optimal
solution. The key to finding a good solution is a combination of only considering columns
with small dictionaries and applying the compression techniques to samples of each of
these columns.

Compression of String Dictionaries

In typical business scenarios up to 50% of the total databases size are the dictionaries
of string columns [87]. In many cases the largest of these dictionaries are the ones that
are accesses rarely. In the TPC-H benchmark the comment column of the lineitem
table is a typical example [100]. While it is the largest of all columns—uncompressed
it is one fourth of the whole database size—there is no query that accesses it. The
comment column of the orders table, one eighth of the total, is accessed in one of the
22 queries of the benchmark. The compression of these dictionaries is therefore essential
to bring the memory footprint down, while there is no impact on the performance in
many cases. Hence, in contrast to index vectors, it can also make sense to use heavy-
weight compression on some string dictionaries. But the candidates have to be carefully
chosen, since access to certain dictionaries may be performance critical. Ratsch [87]
evaluates known compression schemes for string dictionaries in HANA and compares
there suitability for common benchmarks. He achieves compression rates between 30%
and 50% without a significant impact on the scan-performance. However, the time

15

2. Main Memory Database Management Systems

needed for initially compressing the dictionaries has to be considered as well. The work
shows that automatically determining the right scheme is a complicated task and cannot
be done without access statistics and sample queries on the compressed data.

2.2.4. Main and Delta Storage

Although the compression techniques presented in the last section have different char-
acteristics in terms of compression ratios, scan-, and single-lookup-performance, they
have one thing in common: they have a noticeable impact on the write-performance. In
many cases the update of a single value triggers the de- and re-compression of the whole
structure that holds the column. The insertion of one row into a large table might take
seconds, especially with all the algorithms that are executed to evaluate the optimal
compression scheme for parts of the table. This therefore contradicts the original goal
of building HANA as a MMDBMS to support mixed-workloads.

Since column stores have a poor write performance in general because of the memory
layout, this is a common problem. The general idea is to buffer updates in a secondary
data structure, while keeping the main storage static. C-Store [98], for instance, differ-
entiates between Read-optimized Store (RS) and Writeable Store (WS) [94]. A so called
Tuple Mover transfers data in batches from WS to RS.

HANA’s update buffer, called Delta Storage, is optimized to keep read- and write-
performance in balance. It stores data in columns just like the main storage, but because
it usually holds less data than the main storage, none of the compression techniques,
except for dictionary encoding, are used. The delta dictionary is independent of the
main dictionary, i.e., values may appear in both dictionaries with different value IDs. In
consequence a insertion operation only triggers a lookup in the delta dictionary. In case
the value is already there, the value ID is inserted into the column. If the value is not
in the column, it is inserted and a new value ID is assigned. While the main dictionary
is stored as a sorted array, where the value ID is the position of a value inside the array,
the delta dictionary has to use a structure which consists of two parts to provide fast
look-ups and insertions. First, values are stored in an array in order of their insertions.
The value ID is the position of the of the value within the array. However, finding the
value ID belonging to a value takes O(n) operations. Therefore, values are also inserted
in a B+-Tree, where they are used as key and the value ID is the (tree-)value. This way,
the value ID belonging to a value can be found with O(log n) operations. Insertions have
the same complexity.

HANA uses an insert-only approach, i.e., update operations delete the old entry and
insert a new one. Because removing the row from main storage immediately would be
expensive, it is marked invalid in a special bit-vector instead and finally removed when
the delta is merged into the main storage. HANA also supports temporal data, then the
bit-vector is replace with two time stamps that mark the time range for which the entry
was valid [55].

With the delta approach the main storage can be optimized solely for reading and
it can be stored on HDDs as is to guarantee durability. In contrast the delta storage
is kept only in main memory, but operations are logged to disk. In case of a a system

16

2.3. Related Work: Using Co-processors in a DBMS

failure, the main storage can simply be loaded and the delta log has to be replayed to
return to the last commited state. Of course data has to be moved from delta buffer
to main storage at some point in time. This process—called Delta Merge—creates a
new main dictionary with entries from the old main and delta dictionary. Afterwards all
value IDs have to be adjusted to the new dictionary. This can be done without look-ups
in the new dictionary by creating a mapping from old to new IDs while merging the
dictionaries. During the whole operation all write transactions are redirected to a new
delta buffer, read transaction have to access the old main and delta as well as the new
delta storage. Except for the short time, when the new delta and main are activated,
there is no locking required. In Section 4.3 we take a closer look at the creation of the
new dictionary.

2.3. Related Work: Using Co-processors in a DBMS

Before we focus on GPUs for the remainder of this thesis, we take a look at related work
that concentrates on other available co-processors in the context of DBMS.

FPGAs are versatile vector processors that provide a high throughput. Müller and
Teubner provide an overview of how and where FPGAs can be used to speed up DBMS
in [70]. One of there core messages is that an FPGA can speed up certain operations
but should—like the GPU—be used as a co-processor next to the CPU. In [97] the same
authors present a concrete use case: doing a stream join on the FPGA.

The stream join was also evaluated on the cell processor in [29, 28]. However, the
cell processor is not a typical co-processor but a heterogeneous platform that provides
different types of processing units, the PowerPC Processing Element (PPE) and 8
Synergistic Processing Elements (SPEs). The PPE is similar to a typical CPU core, while
the SPEs work together like a vector machine. The co-processing concept is inherent
in this architecture, because the developer has to decide which processing unit to use
for every algorithm. We will face similar challenges in the future with heterogeneous
architectures that provide CPU and GPU on the same chip. The same authors also
published work about sorting on the cell processor [27].

Recently Intel announced its own co-processor: the Xeon Phi, also called Many In-
tegrated Core (MIC), which is a decendant of Larrabee [91]. For the Xeon Phi, Intel
adapted an older processor architecture and inter-connected a few dozen cores with a
fast memory bus. The architecture focuses on parallel thread execution and SIMD in-
structions with wider registers than Xeon processors. It still supports x86 instructions,
so a lot of software can be ported by re-compiling it. However, to gain performance
algorithms have to be adjusted or re-written to support a higher number of threads and
vector-processing. Intel published a few insights on the architecture on the use case of
sorting in [71]. In 2013 the Xeon Phi also started supporting OpenCL. Therefore, it
should be possible to use algorithms written for the GPU. Teodoro et al. compared the
performance of GPU, CPU and Xeon Phi in [96].

In a typical computer system there are other co-processors next to the GPU that
can be used for general purpose calculations. Gold et al. showed that even a network

17

2. Main Memory Database Management Systems

processor can be used to execute hash joins [31].

18

3. GPUs as Co-Processors

In the last decade GPUs became more and more popular for general purpose computa-
tions that are not only related to graphic’s processing. While there are lots of tasks from
different fields ported to the GPU [82], the best known and maybe most successful one
is password cracking. With the help of commodity hardware in form of graphic cards it
became possible for almost everyone to guess passwords in seconds instead of hours or
even days [51]. This shows that the GPU has an immense potential to speed up com-
putations. Additionally, it seems that the GPU will be integrated directly into almost
every commercial CPU in the future. Therefore, we think that it is the most important
co-processor architecture at the moment and concentrate on GPUs for general purpose
calculations for the remainder of the thesis.

GPUs use a different architecture than CPUs to process data in a parallel manner.
There are similarities with other co-processors, such as FPGAs and Intel’s recently
released architecture Xeon Phi. While CPUs use a low number of powerful cores with
features such as branch prediction and out-of-order-processing, FPGAs, GPUs, and Xeon
Phis consist of dozens to hundreds of weak processing units, which have to be used in
parallel to achieve good (or even acceptable) performance. Therefore most of the findings
in this thesis also apply to other co-processors, especially if they can be programmed
with the OpenCL framework.

We describe the key aspects of the GPU’s architecture and compare it to the CPU in
Section 3.1. The main problem when offloading calculations to an external co-processor
is, that it has to communicate with the CPU to get input data and transfer the results
back. We discuss the influence of this bottleneck in Section 3.2. To interact with GPUs
developers have the choice between direct programming and the usage of libraries that
transparently process data on the GPU. OpenCL1 and CUDA2 are the two most common
frameworks to program GPUs directly. There characteristics and available libraries for
the GPU are described in Section 3.3. The main part of this chapter in Section 3.4
focuses on different micro benchmarks to show the strong- and weak-points of the GPU.
Based on the characteristics we can derive from these benchmarks we draw a conclusion
and outline the remainder of the thesis in Section 3.5.

3.1. SIMD Processing and Beyond

Flynn specified four classes of machine operations [24], which are still used today to
differentiate between parallel processor architectures. We introduce the taxonomy in

1http://www.khronos.org/opencl/
2http://www.nvidia.com/cuda

19

3. GPUs as Co-Processors

Subsection 3.1.1. However, neither CPU nor GPU fall into only one category. Both
architectures are mixed, but have a tendency. In Section 3.1.2 we discuss this further.

3.1.1. Flynn’s Taxonomy

The four classes of Flynn’s Taxonomy are shown in Figure 3.1:

Single Instruction Single Data (SISD) describes a processor with one processing unit
that works on one data stream. In this work we often refer to this as sequential process-
ing. Before the first SIMD instruction sets, e.g., MMX, 3DNow!, and Streaming SIMD
Extensions (SSE), were introduced, single core processors were working in a pure SISD
manner.

Single Instruction, Multiple Data (SIMD) means that a number of processing units
are executing the same statements on different data streams. In the 1970s vector pro-
cessors were working like that. Today most processors (CPUs and GPUs) have parts
that work in a SIMD fashion.

Multiple Instruction, Single Data (MISD) requires a number of processing units to
do different instructions on the same data stream. This processing model can be used
for fault tolerance in critical system. Three or more processors do the same operation
and there results are compared.

Multiple Instruction, Multiple Data (MIMD) describes processing units that can in-
dependently work on different data streams. In contrast to just using multiple SISD
processors this approach allows to share resources that are not needed exclusively, e.g.,
the memory bus or caches.

Multi-Core CPUs can be roughly classified as MIMD and GPUs as SIMD architec-
tures. However, both have aspects of the other architecture. The MIMD-nature of mod-
ern multi-core CPUs is obvious to most developers. Threads can work independently on
different algorithms and data segments in at the same time. However, with instruction
sets such as SSE and Advanced Vector Extensions (AVX) it is also possible to parallelize
execution within one thread, e.g., building the sum of multiple integers with one instruc-
tion. This SIMD aspect of the CPU is almost hidden, because in most cases this type of
processing happens without the developer’s explicit interference. The compiler analyses
the code and uses SIMD-instructions automatically. Nevertheless these instructions can
be used explicitly and the benefit may be dramatic in some cases [104, 103].

Nowadays, no (pure) SISD processors can be found in server, desktop, or mobile
computers. Even single-core CPUs usually have more than one processing unit to execute
SIMD instructions. Multi-Core CPUs and GPUs, as well as Xeon Phis, are a mixture of
SIMD and MIMD processors. However, the SIMD aspect of GPUs is important because
of the high number of cores that work in single lock step mode. On the CPU SIMD is
available in form of instructions, which are used by modern compilers automatically.

20

3.1. SIMD Processing and Beyond

Instructions

Data

PU

Instructions

Data

PU PU PU PU

Instructions

Data

PU PU PU PU

Instructions

Data

PU PU PU PU

SISD MISD

SIMD MIMD

Figure 3.1.: Flynn’s taxonomy

3.1.2. Hierarchy of Parallelism—the GPU Architecture

While GPUs are often referred to as SIMD processors, its architecture is actually MIMD-
SIMD-hybrid. Figure 3.2 depicts the simplified NVIDIA Kepler GK110 architecture,
which we explain exemplary in this section. We use the NVIDIA terminology for the
description, the concepts in principle are similar to hardware of other vendors.

The 2880 processing cores on the GPU are grouped in 15 Streaming Multi Processors
(SMXs). 192 cores on each SMX share a single instruction cache, 4 schedulers, and a
large register file. They are interconnected with a fast network, which among other thins
provides (limited) access to registers of other cores. Hence, all the cores of one SMX are
tightly coupled and designed for SIMD processing. Consequently, threads on the cores
are executed in groups of 32. Such a group is called a warp and is able to execute only
2 different instructions per cycle, i.e., in every case at least 16 cores execute exactly the
same instruction, they run in single-lock-step mode.

Compared to the internals of a SMX the coupling between different SMXs of a GPU
is loose. Threads are scheduled in blocks by the so-called GigaThread engine, there is no
global instruction cache, and the cores of different SMXs cannot communicate directly.
In consequence, no synchronization between threads of different SMXs is possible. They
operate independently and represent the MIMD processing part of the GPU’s architec-
ture. Hence, one SMX works similar to a vector machine, but the whole GPU is more
like a multi-core vector machine.

21

3. GPUs as Co-Processors

C C C C C C

C C C C C C

C C C C C C

Registers

Shared Memory, Read-Only Cache

SMX

C C C C C C

C C C C C C

C C C C C C

Registers

Shared Memory, Read-Only Cache

SMX

C C C C C C

C C C C C C

C C C C C C

Registers

Shared Memory, Read-Only Cache

SMX

L2 Cache

Memory ControllerMemory Controller Memory Controller Memory ControllerMemory Controller

Figure 3.2.: Simplified architecture of a GPU

The memory hierarchy supports this hybrid processing model. Not only do processing
cores of one SMX share a register file, they also have fast access to 64 kB of Shared
Memory. This can be configured to either act as L1 cache or as memory for fast data
exchange. In each SMX there is additional read-only and texture memory, which is
optimized for image processing. Between SMXs there is no other way to share data
than using DRAM. While DRAM on the GPU usually has a much higher bandwidth
than the RAM used for CPUs it also has a much higher latency (a few hundred cycles
in modern GPUs). In contrast to CPU processing, where thread/context-switches wipe
registers, on the GPU every threads keeps its own registers in the register file. Therefore,
it is possible to load one warp’s data from DRAM to the registers while other warps
are running. This method of overlapping is the key for good performance on the GPU,
but makes it necessary to execute much more threads than cores. Otherwise, most
threads wait for DRAM, while only a few can be executed. Depending on the scenario
this under-utilization happens when there are less than be 10 to 100 threads per core.
Modern GPUs address the problem of the DRAM’s high latency by providing one L2
cache for all SMXs that operates automatically—similar to the L2 cache on CPUs. On
Kepler it has a size of 1538 kB. Since memory is always accessed by a half-warp, the GPU
is optimized for coalesced access. Agian this is simplified but it means that consecutive
threads should access consecutive memory addresses. More information about this topic
and details about Kepler can be found in the best practices guide for CUDA [73] and
the architecture whitepaper [77].

3.1.3. Programming Model for GPU Parallelsim

The hybrid architecture of multiple SIMD-processors requires a different way of applying
parallel aspects to algorithms. With threads as parallel execution paths on the one hand
the differences in SIMD and MIMD cannot be expressed. Simple parallel instruction
and paradigms such as OpenMP’s parallel for on the other hand are not flexible enough;
the same counts for special SIMD instructions such as Intel’s SSE or AVX. Therefore,

22

3.2. Communication between CPU and GPU

a model of workgroups and threads to differentiate between the MIMD and the SIMD
aspects was introduced. Both, OpenCL and CUDA are implementations of this model,
we take a look at their differences in Section 3.3.

When you launch a function on the GPU, it will start a fixed number of workgroups and
each workgroup consists of a fixed number of threads. Although this is not exact, it makes
sense to imagine that one SMX executes a workgroup with all its cores. Workgroups
run independent of each other and can only be synchronized by ending the function
and starting a new one. In contrast to the workgroups themselves their threads can be
easily synchronized and are able to exchange data via a small block of shared memory,
which can be accessed with a very low latency (a few cycles depending on the hardware).
The number of threads per workgroup is usually called workgroup size. Since at least
one warp is always executed, it makes sense to choose a multiple of 32 as workgroup
size. In some situations it is useful to know that a group of 32 threads needs no explicit
synchronization, but in most cases hardware and compiler take care of an optimization
like this. Hence, threads of one workgroup should be handled as if they run in lock-step
mode, i.e., every thread executes the same instruction on data in its registers in one
cylce.

3.2. Communication between CPU and GPU

The way of communication between the CPU and the GPU depends on the GPU’s type.
In general, we can differentiate between three classes of co-processors by looking at their
integration into the computer’s CPU.

1. Co-processors such as most graphic cards today are connected via the PCI-Express
(PCIe) bus, i.e., data has to be transferred to the graphic cards memory, where
the GPU can access it. For data-intensive tasks this is the bottleneck [37]. Intel’s
XeonPhi and FPGAs are also usually connected via PCIe.

2. The second class of co-processors is tightly integrated into the system bus. The
GPU part of AMD’s APUs fits into that category. It still operates on its own but it
shares memory with the CPU [17]. Therefore data can be transferred much faster.

3. Modern CPUs consist of a collection of co-processors of the third class. The FPU
for instance is now integrated and has special registers on the CPU. Cryptographic
processors also fall into this category. There are special instructions for these co-
processors in the CPU’s set. A software developer usually does not explicitly use
the instructions since the compiler or interpreter automatically does that.

In this work we are focusing on the first class of co-processors, also called external
co-processors. In Chapter 6 we will address the second class, which is at the moment
often referred to as heterogeneous processor architecture.

23

3. GPUs as Co-Processors

3.3. Software Frameworks and Libraries

Co-processors for general-purpose calculations require special software to use them. De-
velopers have to decide whether they want to use a framework to write low-level-code
or libraries that provide functions for a certain domain. When programming for NVidia
GPUs, which are used in all experiments in this thesis, one has the choice between us-
ing OpenCL and CUDA. The advantage of OpenCL over CUDA is that not only other
co-processors but also the CPU is able to execute it. We conducted some experiments
that show that we can run OpenCL code developed for the GPU on the CPU without
changes (see Section 5.5.3). Although this might be slower than a native parallel CPU
implementation, it is still faster than sequential execution. Next to CPUs, other GPU
vendors also support OpenCL. AMD even stopped developing Stream, which was their
specific framework for General Purpose Graphics Processing Unit (GPGPU) computing.
Intel also provides OpenCL for their GPUs and for the Xeon Phi. We expect future de-
vices from different vendors to use OpenCL as well, because it is an open specification
and many applications already support it.

Both frameworks focus on parallel architectures and are very similar in principle. The
code running on the GPU—more general the device—is called kernel and uses the pro-
gramming model of workgroups and threads as explained above. OpenCL and CUDA
are both dialects of the C programming language. In many cases it is easy to transform
code between CUDA-C and OpenCL-C, because it is mostly a matter of translating key-
words. For example, synchronizing threads is done by __syncthreads() in CUDA and
barrier(CLK_LOCAL_MEM_FENCE) in OpenCL. In general CUDA provides more language
features, such as object orientation and templates, as well as more functional features.
As long as the missing functional features in OpenCL do not limit the algorithm the run-
time of OpenCL and CUDA kernels for the same purpose is comparable in most cases.
According to the authors of [53] OpenCL is mostly slower (13% to 63%) on NVidia
GPUs, but they found that often there is no difference in performance at all. However,
sometimes kernels can be designed in another way with features only available in CUDA,
such as Dynamic Parallelism and dynamic memory allocation. The first one allows to
spawn kernels from inside other kernels and the synchronization of all threads on the
device and the second feature allows developers to allocate memory inside kernels. This
opens up new possibilities, which might affect performance as well (see Section 3.4.1).

The conceptional difference between OpenCL and CUDA is the way, kernels are com-
piled. CUDA has to be compiled by NVidia’s nvcc and the object files are then linked
to the CPU object code. To support future devices the compiler allows to include an
intermediate code, called PTX, which is generated by nvcc at compile time and then
used to produce the binary code for the specific device by the CUDA run-time. Because
OpenCL targets a wider range of devices, it makes no sense to deliver device-specific
code and ship it with the binaries in advance. Instead the OpenCL code is compiled
at run-time by the driver of the device. In Chapter 5 we use this feature for our query
execution framework.

In Section 3.1.2 we already mentioned that there are details about the architecture,
that are performance critical when unknown, e.g., coalesced memory access or under-

24

3.3. Software Frameworks and Libraries

utilization. There are many other pitfalls in GPU-programming, but similar to CPU
software there are already libraries that provide optimized algorithms for certain do-
mains.

Thrust Similar to the Standard Template Library (STL) in C++ the Thrust library
provides basic algorithms to work with vectors of elements. It provides transformations,
reductions, and sorting algorithms for all data types available on the GPU.

CUBLAS Algorithms for the domain of linear algebra is available for NVIDIA devices
in form of the CUBLAS. As the name suggests the library provides the common Basic
Linear Algebra Subprograms (BLAS) interface to handle vectors and matrices. The
CUSPARSE library provides similar algorithms for sparse matrices and vectors.

CUFFT The CUFFT library provides the CUDA version of Fourier transforms, which
are often needed in signal processing

NPP The NVIDIA Performance Primitives are a library for image and video process-
ing. In contrast to the other libraries, where every function spawns at least one kernel,
the functions of the NPP can also be called from within kernels.

unified SDK The BLAS and FFT primitves are also available in OpenCL as part of the
unified SDK. It also includes the former Media SDK with video pre- and post-processing
routines.

Another way to use parallel co-processors without handling the details of the under-
lying hardware is OpenACC [79]. With OpenACC developers can use patterns to give
the compiler hints on what can be parallelized and executed on the GPU. Listing 3.1
shows code for the matrix multiplication in C with OpenACC. The pragma in line 1
tells the compiler that the following code block should be executed on the co-processor,
a and b are input variables, and c has to be copied back to the host after kernel execu-
tion. By describing the dependencies between the iterations of a loop, the compiler can
decide how to parallelize execution. Loop independent in lines 3 and 5 encourages to
distribute the execution over multiple cores while loop seq forces the execution of one
loop to one core, because every iteration depends on the previous one.

Listing 3.1: Matrix multiplication in OpenACC

1 #pragma acc kernels copyin(a,b) copy(c)

2 {

3 #pragma acc loop independent

4 for (i = 0; i < size; ++i) {

5 #pragma acc loop independent

6 for (j = 0; j < size; ++j) {

7 #pragma acc loop seq

8 for (k = 0; k < size; ++k) {

25

3. GPUs as Co-Processors

9 c[i][j] += a[i][k] * b[k][j];

10 }

11 }

12 }

13 }

3.4. Micro-Benchmarks

In research, magazine articles, blogs and tutorials [82, 8, 23] are a lot of “do’s and
don’ts”can be found when it comes to GPU processing. One of the ubiquitous claims is
that a problem must be “large enough” to justify offloading to the GPU. Hence, small
problem sizes should not be calculated on the GPU. Another “don’t”, which is especially
important for problems in the DBMS domain, is that you should not process strings on
the GPU. In this section we present some simple micro-benchmarks we designed to
evaluate these claims.

There are three reasons why “small” problems are always calculated faster on the
CPU:

1. Starting a kernel requires the CPU to push the code to the GPU and transfer the
kernels parameters before the calculation can begin.

2. Since we use the external GPU, we have to transfer input data to the GPU and
the results back.

3. Because of the parallel architecture, the workload has to be large enough to be
distributed over all cores.

In Section 3.4.1 we conduct some experiments to measure the overhead for the first two
points. To overcome the transfer problem (point 2), it is often suggested to overlap
transfer and computations. We show how this method can be used and what its im-
plications are in Section 3.4.3. Although many problems can benefit from the GPU’s
parallel architecture, there is a break-even point in workload size, at which the GPU can
be fully utilized utilized (point 3). We try to get a feeling for this break even point in
Section 3.4.4 on the example of matrix multiplication. Finally, in Section 3.4.5 we take
a look at the claim that the GPU is not good at string processing.

3.4.1. Memory Bandwidth and Kernel Overhead

When involving external co-processors for calculations there is always some overhead for
transferring the data needed and calling the kernel.

Transfer In the first experiment we copy data from the main memory to the device
and compare the two different modes that are available in CUDA (and OpenCL as well).
The default transfer is done on page-able data in main memory, i.e., we can transfer data
from any memory segment accessible by the process. In this mode the CPU pushes data

26

3.4. Micro-Benchmarks

to the GPU after checking if the page is in main memory at the moment or swapped to
disk. The second mode transfers data from pinned memory to the GPU. The operating
system guarantees that a pinned page is always in main memory and will not be swapped
at any time. Therefore the GPU can transfer the data without interaction of the CPU
with Remote Direct Memory Access (RDMA). To use pinned transfer, the process has
to allocate pinned memory or pin already allocated memory. Then the process tells the
GPU’s copy engine to transfer data from a given memory segment and continues with
other operations. We can see in Figure 3.3 on the left that copying from pinned memory
is always faster than the default operation. What is often concealed is that pinning
memory involves an expensive system call. As shown in the Figure the Pin call takes at
least 300 µs, which is approximately the time needed to transfer one megabyte of data.
For larger memory segments it takes almost the same time like copying the data right
away. Therefore, it makes no sense to naively pin memory to transfer data only once. In
Section 3.4.3 we discuss how pinned memory can be used instead for streaming to avoid
the costs for pinning large amounts of memory. In Section 5.1 we take another look at
different solutions for the transfer problem.

Kernel Invocation Starting a kernel requires the CPU to initialize a connection with
the GPU via PCIe bus. The GPU then has to reserve resources and prepare the envi-
ronment for the kernel execution. Compared to a function call on the CPU this is very
expensive. NVidia’s new GPU architecture “Kepler” introduced a new feature called
“Dynamic Parallelism” that allows to start kernels from inside other kernels and syn-
chronize all threads on the device without the CPU’s interaction [77].3 We conducted
a small experiment to check if we can gain performance from this new feature. In the
experiment we pair-wise multiply the elements of two arrays containing 100 mio double-
precision numbers. Every thread reads two numbers from the arrays, multiplies them,
and writes the result back to a result array. Usually we would start one kernel and choose
the number of workgroups and threads so that one thread had to multiply only a few
elements (in Section 5.5.4 we evaluate a good number of threads to start). For the sake
of our experiment we split the workload and start multiple kernels. Every kernel now
starts one thread per pair, i.e., every thread executes exactly one multiplication. We
wait for each kernel to finish and do a global synchronization before we start the next
one. The more kernels we use the more overhead for invocation and synchronization will
be necessary. For the traditional approach we start the kernels directly from the CPU.
With Dynamic Parallelism we start one initial kernel with one workgroup and one thread
that starts the multiply-kernels. Naturally, we would assume that Dynamic Parallelism
is faster because no communication between CPU and GPU seems to be involved when
new kernels are started.

Figure 3.4 shows that we need around 16 ms to execute the task with 10 kernels, each
having 39 062 workgroups. Note that we start a thread for every single multiplication.
Independent of the approach, using a high number of kernels slows the process down.
The high execution time for more than 10,000 partitions/kernels is mostly due to the

3At least there is no visible interaction from a developer’s view.

27

3. GPUs as Co-Processors

104 105 106 107 108 109
101

102

103

104

105

106

Size [Bytes]

T
im

e
[u
s]

Pin
Copy
Pinned Copy

101 102 103 104 105
101

102

103

Number of Kernel Starts

T
im

e
[m

s]

Traditional
Dynamic Parallelism

Figure 3.3.: Comparison transfer pin-
nend and pageable memory

Figure 3.4.: Traditional kernel starts vs
Dynamic Parallelsim

underutilized GPU. In this case every kernel starts 40 workgroups with 256 threads each
to do the work. Although 10 000 threads should be enough to utilize all cores, most of
them have to wait for I/O because of the high latency of the GPU’s RAM. More threads
are better to hide this latency. If this was the only reason, there should not be a large
overhead for 500 partitions, where every kernel starts around 800 workgroups. Still the
calculations take more than 10/18 ms (traditional/Dynamic Parallelism) longer than just
using one kernel, which can only be caused by synchronization and overhead for starting
new kernels. We can also see that it actually takes longer to start kernels from the GPU
with Dynamic Parallelism than on the CPU with the traditional approach. For 10 kernel
starts the whole process takes around 600 µs longer with Dynamic Parallelism and 10
kernels, the absolute difference for 100,000 kernels is around 1.4 s. So we can draw two
conclusions from this experiment: first, global synchronization should be avoided and
the less kernel calls are needed in the algorithm the better. Second, in its currenct state
Dynamic Parallelism does not change performance for the better. At least not, if we use
one thread on the GPU to fulfill the role of the GPU as we do here.

3.4.2. Single Core Performance

GPUs may have many cores, but these cores are very weak compared to a CPU core. For
the following experiment we executed the naive matrix multiplication algorithm shown
in Listing 3.2 on the CPU (Intel Xeon E5-2665 at 2.40 GHz) and on the GPU (K20 at
732 MHz). 4

We do not measure transfer but pure execution time, Figure 3.5 shows the execution
time for multiplying two square matrices. The CPU is approximately 250 times faster,
independent of the size. Although we cannot just conclude that a CPU core is 250 times
faster, as there are other parameters such as cache and memory bandwidth that play a

4See Appendix A.1 for Details on Hardware.

28

3.4. Micro-Benchmarks

0 50 100 150 200 250 300
10−4

10−3

10−2

10−1

100

101

Matrix Size

E
x
ec
u
ti
o
n
T
im

e
[s
]

CPU
GPU

Figure 3.5.: Execution time for matrix multiplication on a single core

role, but the experiment shows the importance of using parallel algorithms and as many
cores as possible to get a good performance on the GPU.

Listing 3.2: Naive algorithm for matrix multiplication

1 for(uint i=0;i<size ;++i) {

2 for(uint j=0;j<size ;++j) {

3 for(uint k=0;k<size ;++k) {

4 C[i+j*size] = C[i+j*size] + A[i+k*size] * B[k+j*size];

5 }

6 }

7 }

Of course this experiment says nothing about the ability of GPUs to multiply matrices,
any other sequential algorithm would have shown a similar behavior. In Section 3.4.4
we show the performance for GPU and CPU when optimized algorithms are used on
multiple cores.

3.4.3. Streaming

In Section 3.4.1 we discussed that pinned memory transfers have a higher bandwidth
but require the time-consuming allocation of pinned memory on the CPU. So by just
pinning memory segments before transfer, there is no benefit. The real advantage of
pinned transfers is that they can be done asynchronously, i.e., the CPU can continue
working while the GPU does the transfer. Additionally, the PCIe bus supports full-
duplex communication and modern GPUs have two copy engines. Hence, we can copy
data from and to the GPU simultaneously at full bandwidth. To gain advantage from
this we have to change the way we do uploads to and downloads from the GPU’s memory.
Instead of allocating pinned memory for all of the data to be transferred at once, the
4-way-concurrency pattern can be used to achieve the same high bandwidth with a small
pinned memory buffer [93].

29

3. GPUs as Co-Processors

We explain and evaluate this pattern by taking a look at a very simple algorithm
that is part of the Delta Merge process explained in Section 2.2.4. In SAP HANA every
distinct value of one column is stored in a sorted dictionary and the values in the column
are references to the entries in the dictionary. The Delta Merge rebuilds the dictionary
in a first step and updates the references in a second one. We concentrate on the second
step which uses a mapping from the old reference to the new reference to update the
column. Since references are just integers, the mapping is an array, where each new
reference is stored at the position of the old one. Therefore, the algorithm just iterates
over the vector of references, and replaces each element with the mapped value as shown
in Listing 3.3.

Listing 3.3: Second part of the delta merge algorithm

1 //src and dest can point to the same address

2 void recode_cpu(int *dest , const int* src ,

3 const int *map , size_t size) {

4 for(uint idx =0;idx <size ;++ idx) {

5 dest[idx] = map[src[idx]];

6 }

7 }

For a parallel implementation on the CPU we can simply use OpenMP’s parallel_for.
There are no dependencies between the loop iterations, so OpenMP starts enough threads
to saturate all CPU cores and distributes the work evenly. The parallel GPU implementa-
tion does the same, but because we want to use streaming, a bit more effort is necessary:
first, we copy the map to the device memory. Afterwards, processing and streaming
of the reference vector overlaps with the help of the 4-way-concurrency pattern. We
allocate three pinned buffers in the CPU’s RAM and three corresponding buffers in the
device memory. Now we do four things at once as depicted in Figure 3.6:

• the CPU copies references to the first buffer

• the GPU’s copy engine copies references from a second buffer to the GPU’s memory
(first buffer there)

• the GPU processes the references in the second buffer

• the GPU’s second copy engine copies the already processed elements from the third
buffer on the GPU to the third buffer in main memory

Additionally, we copy the elements from the third CPU buffer to the target memory as
part of the first step.

In Figure 3.7 we can see the throughput (on the Z6005) for a vector with 4 GB of
integers depending on the size of the mapping array. An 1 kB array holds 256 different
integers, i.e., there are 256 different entries in the column’s dictionary. The references are

5See Appendix A.1 for Details on Hardware.

30

3.4. Micro-Benchmarks

T
a
rg

e
t

M
e
m

o
ry c1

c2

c3

c4

g1

g2

g3

CPU
Buffers

GPU
Buffers

Process

(a) Step 1

T
a
rg

e
t

M
e
m

o
ry c1

c2

c3

c4

g1

g2

g3

CPU
Buffers

GPU
Buffers

Process

(b) Step 2

T
a
rg

e
t

M
e
m

o
ry c1

c2

c3

c4

g1

g2

g3

CPU
Buffers

GPU
Buffers

Process

(c) Step 3
T

a
rg

e
t

M
e
m

o
ry c1

c2

c3

c4

g1

g2

g3

CPU
Buffers

GPU
Buffers

Process

(d) Step 4

Figure 3.6.: Streaming with the 4-way concurrency pattern

32K 256K 8M 256M 2G

1,000

4,000

7,000

10,000

13,000

Mapping - Size in Bytes

T
h
ro
u
gh

p
u
t
in

M
B
/s

CPU(seq)
CPU

GPU(t)

GPU(s)
GPU total

Figure 3.7.: Streaming on the example of the recode algorithm

31

3. GPUs as Co-Processors

uniformly distributed over the column vector. The blue and the red curve are the ones to
compare: blue is the CPU using all its cores, red is the GPU. We also added the sequential
CPU implementation CPU (Seq) as a baseline. GPU (t) shows the throughput for only
transferring without executing the kernel and GPU (s) is the GPU process without the
initial transfer of the mapping array.

The throughput for small mapping arrays is higher, because the array itself fits into
the CPU’s caches. Therefore, only the reading and writing of the column vector requires
access to slower main memory. Since every value in the column vector is touched only
once, reading and writing cannot benefit from the cache.6 The larger the mapping array
gets, the more access to slower caches (L2 and L3) is needed. As we can see 13 GB/s
is the upper limit for reading the column vector from memory and writing it back. At
8 MB the array does not fit into the L3 cache anymore, and a third random memory
access is needed every time a part of the mapping array is not in cache. At more than
128 MB the cache is practically useless; because of the uniform distribution every access
to the mapping array is a cache miss. In contrast to the sequential reading and writing
of the column vector the random access is much slower. The throughput is constant at
1 GB/s.

The GPU’s streaming throughput is around 7 GB/s. Until 256 kB there is no difference
between GPU (s) and GPU total, i.e., the GPU processes a segment faster than it
transfers the next one. In these cases the mapping array fits into the GPU’s Cache.
With larger arrays we have more cache misses and execution takes longer than transfer
(just streaming the data—GPU (s)—is independent of the array size). For array sizes
larger than 128 MB the GPU is faster than the CPU, because both devices cannot use
their caches and random access to the GPU’s memory is faster. If the array becomes
larger than 256 MB the throughput on the GPU decreases and the array’s initial transfer
becomes the bottleneck.

We can show here that data intensive algorithms can benefit from the high bandwidth
on the GPU if they are stream-able and the caches on the CPU get to small to hold data
that is periodically needed. However, this example is certainly artificial. Scenarios, where
dictionaries contain more than 20,000,000 entries and these are uniformly distributed are
not found often. Also, references are usually bit-packed/compressed. Therefore, the re-
encoding requires more computation and less transfer [104]. It is hard to predict the
effect on our comparison, because the CPU algorithm is also memory bound and will
therefore benefit from the compression as well.

3.4.4. Matrix Multiplication

Operations on large matrices are often said to benefit from execution on the GPU.
However, for every operation there is a break-even point at which it starts to make sense
to use an external co-processor. For small matrices the overhead to start a kernel on the
GPU is too high and because of the parallel architecture the calculations cannot utilize
all cores on the GPU and therefore use only a fraction of the available power.

6In fact, a good implementation should use an instruction to bypass the caches for reading and writing
the vector.

32

3.4. Micro-Benchmarks

0 2 4 6 8 10 12 14 16

·103

0

50

100

150

200

250

Matrix Size

E
x
ec
u
ti
o
n
T
im

e
[s
]

100 1,000 10,000

0.001

0.01

0.1

1

10

100

Matrix Size

E
x
ec
u
ti
o
n
T
im

e
[s
]

CPU (Eigen)
GPU

CPU (MKL)

Figure 3.8.: Matrix multiplication on CPU and GPU

On the example of square matrix multiplication we compare three libraries for linear
algebra to find the break-even point. For the experiment we use the K20 GPU and
measure transfer of input and result as well as the execution time. 7 On the CPU we
use the single-threaded Eigen library8, the multi-threaded Intel Math Kernel Library
(MKL), and on the GPU the CUBLAS library, which is part of the CUDA toolkit. The
results are shown in Figure 3.8 in linear scale on the left and logarithmic scale on the
right. Although the Eigen library uses only one core for calculations on the CPU, it
is faster than the GPU for the multiplication of matrices smaller than approximately
2500 × 2500 double precision elements. The MKL, which saturates the 12 CPU-cores
during calculation, is up to 10 times faster than Eigen for multiplying matrices smaller
than 2000 × 2000. For larger matrices the speedup is around 3 to 4. At a size of
5000 × 5000 CUBLAS is faster than both CPU implementations. If the matrix is even
larger the speedup of the GPU compared to the CPU is dramatic. The computation of
15000× 15000 elements on the GPU is 20 times faster than on the CPU with Eigen and
4 times faster than the MKL.

3.4.5. String Processing

In the last experiments we have seen that the GPU is well suited to handle data types
such as integers and floating point numbers. In this section we want to evaluate how
the GPU handles strings. An indicator that GPUs may not be good at this is that no
official library is able to work with strings. Even very simple string-operations, such as
comparisons, are not available and have to be implemented by the application developer.

There are two main problems when dealing with strings: first, variable length values
do not fit well to the SIMD processing architecture of GPUs. There is always a fixed
number of processing cores doing the same instruction. We cannot dynamically assign

7See Appendix A.1 for Details on Hardware.
8http://eigen.tuxfamily.org/

33

3. GPUs as Co-Processors

work to each of them, but variable length values require exactly this. Second, Strings—
even with constant length—are data intensive and require only a very small amount of
processing in general, e.g., a string comparison often requires just the comparison of the
first character. The transfer to the GPU therefore often dominates the processing time.

A popular suggestion to cope with the problem is dictionary encoding. If there is only
a small number of distinct values, this limits the amount of actual string operations to
a minimum. In case of a lot of unique values, we can process the dictionary itself on the
CPU and the references on the GPU. This leads to the situation that either GPU and
CPU have to communicate every time a string operation is needed or that the CPU has
to pre-process everything, which can easily lead to unnecessary overhead. An equi-join
on a string column for instance would mean that the CPU has to prepare a mapping for
the string references in the joined columns, but in most cases the GPU may only need
parts of these mappings. Hence, dictionary encoding with large dictionaries only makes
sense if it is the minor part of the workload, otherwise the GPU will barely be used.

To evaluate these thoughts we compared the CPU/GPU performance of two operations
which are often used on databases with columns containing strings. The first operation
checks how many strings in one column of a column-wise stored table start with a given
string (startswith-operation). The second operation searches all values for a sub-string
(substring-operation) and returns the number of values that match.

For both operations we implemented three different versions:

• std: In the first approach we used the containers of the C++ standard library.
The column is a simple vector of strings. Since there is no library available which
handles strings on the GPU, this was only tested on the CPU. It is our baseline.

• Custom: Our hand-written implementation uses one block of memory to store all
strings contiguously. An array holds the information on where one value starts and
how long it is (of course one of these variables would be enough, but for the GPU
this gives a few advantages). The core of the substring operation is the Boyer-
Moore-Horspool algorithm. We tried different implementations and decided to
use the OpenSource implementation from https://github.com/FooBarWidget/

boyer-moore-horspool, because it shows the best performance. As a side note:
we had to implement basic functions such as strstr() for the GPU on our own
and used them for both implementations. Interestingly our strstr() is around
20% faster than the C library’s, because—like memcmp()—it does only check for
equality not for greater/lesser.

• Dictionary: We used our Custom structure as dictionary and a simple array holds
the references to the dictionary. We implemented it as read-only structure, i.e.,
the strings in the dictionary are sorted like in SAP HANA’s main storage.

These three implementations of the two operations are now executed with three different
settings:

• Single: The sequential CPU implementation is straight-forward. With one thread
we just compare every value with the given string in a loop.

34

https://github.com/FooBarWidget/boyer-moore-horspool
https://github.com/FooBarWidget/boyer-moore-horspool

3.4. Micro-Benchmarks

• Parallel: The parallel implementation uses OpenMP’s parallel for to execute
the loop on all available cores, which requires one additional line of code.

• GPU: Although the basic execution logic on the GPU is the same—a high number
of values is compared to the search string in parallel—the implementation requires
more effort.

The process can be split up into 6 different steps:

1. allocate memory on the GPU

2. transfer the data to the GPU

3. execute the kernel

4. transfer the result back to the CPU

5. process the result on the CPU

6. free the memory on the GPU

Step 5 is necessary, since the kernel does not give the final result—the number of match-
ing values—but a bitvector with a bit set on every matching position. With a second
kernel call we could add these numbers up to the final result, but this would lead to
much overhead on little work. Hence, we process this on the CPU.

As data set we used the L COMMENT column of the TPC-H benchmark (SF 10),
which consists of 60 mio strings with 10 to 43 characters. The column consists of approx.
70% distinct values. For our experiment we searched for the term “the”. 935 863 entries
start with this term and it is a substring of 2 068 744 values. Since transfer plays an
important role for this experiment, we used the test machine with the K10 GPU and
PCIe Generation 3. 9

Results Startswith In Figure 3.9 on the left-hand side we can see the results for the
Startswith operation. The single core std -implementation of the substring implemen-
tation takes around 600 ms to execute (STD SC). With the help of OpenMP we could
achieve a speedup of about 4 by executing the loop in parallel (multi-core—STD MC).
The Custom-implementation runs approximately in half the time for the sequential as
well as the parallel implementation. On the GPU bar we marked the different phases. It
shows that 90% of the time is needed to allocate/free memory (named GPU overhead)
and transfer the data to the GPU, less than a milli-second is spent on the CPU to pro-
cess the interim result. The overhead is mostly necessary for allocation and transfer of
the input data. The allocation of memory for the interim results and its transfer take
approx. one ms and are therefore negligible. Because of the high transfer costs the GPU
implementation needs three times as long as the parallel CPU implementation, although
the kernel is four times faster. The operation on the dictionary encoded column are two
simple binary searches on the dictionary to find the range of values that match the term
we search for. 99% of the time is spent to find the matching values in the array.

9See Appendix A.1 for Details on Hardware.

35

3. GPUs as Co-Processors

ST
D
SC

ST
D
M
C

C
us
to
m

SC
C
us
to
m

M
C

C
us
to
m

G
P
U

D
ic
t.
SC

D
ic
t.
M
C

0

100

200

300

R
u
n
T
im

e
in

m
s

GPU kernel
Transfer
GPU overhead
CPU

ST
D
SC

ST
D
M
C

C
us
to
m

SC
C
us
to
m

M
C

C
us
to
m

G
P
U

D
ic
t.
SC

D
ic
t.
M
C

0

100

200

300

400

500

R
u
n
T
im

e
in

m
s

Figure 3.9.: The startswith and the substring operation

Results substring The single-threaded execution of the second operation takes between
2 and 3 seconds for the three different implementation. The focus of this experiment
is the comparison of multi-core CPU and GPU, therefore the plot is zoomed to the
interesting results. The plain execution time for all variants with CPU and GPU lie
between 110 and 150 ms. However, the necessary transfer to the GPU adds 200 ms
again.

The startwith operation is much faster on the dictionary encoded column because it
benefits from the sorted dictionary. In contrast, dictionary encoding is disadvantageous
for the substring operation, because a full scan is necessary in the dictionary first to
get the matching references and then another lookup is necessary to find the references
in the array. The more matching references are found in the dictionary, the more time
is necessary for the lookup operation. If there were no matching values in the column
the operation would most likely be a bit faster on the dictionary encoded column. The
same counts for small dictionaries. The startswith-operation is clearly memory-bound.
We can only achieve a speedup of around 4 with 16 cores. There is a significant differ-
ence between the std and the custom implementation, because the contiguous memory
layout allows much faster access while the usage of std::string forces the algorithm to de-
reference another pointer. The substring-operation is obviously CPU bound. We achieve
a speedup of 20 with 16 cores resp. 32 threads. The Horspool algorithms reads a string
more than once. Therefore the cores operate on values in the cache and are not limited
by the memory bus. When executing the operations on the GPU the transfer dominates
the execution time, even if we transfer only the dictionary-encoded values. However, it
is a surprise that the plain execution of the startswith-operation is significantly faster on
the GPU than on the multi-core CPU. We think this is because—although the code does
not show it—the actual execution fits well to the SIMD processing model. All threads
compare the first character with the constant value at the same time and then in most

36

3.5. DBMS Functionality on GPUs

cases the loop continues to the next iteration because there was no hit. This is not the
case for the substring operation, which is indeed slower on the GPU than on the CPU.
The reason for this might be the high branch divergence when executing the Horspool
algorithm. Another problem is that we cannot use the faster Shared Memory for our
implementation because it is shared between the threads of one workgroup and every
thread needs a different amount because of the variable length values. Dealing with this
problem would induce more overhead for the memory management and more branch
divergence because every thread would execute different code depending on where the
string is stored. Maybe just comparing all values in parallel is not the right approach,
but a massively parallel SIMD-like algorithm for searches in short strings may not be
possible.

The claim, that GPUs are bad at string operations is only half the truth. Compared
to a sequential CPU implementation the GPU is factors faster. In case of the startswith
operation the GPU kernel alone is even faster than 16 cores on the CPU, which is
surprising. However, there are two problems. First, we cannot ignore the transfer, which
is the major bottleneck for string operations. Second, we used read-only data structures
for that experiment. The implementation of a std-like vector of strings requires massive
pointer-handling (one for every string). These pointers can only be created on the
CPU, i.e., every string must be allocated and copied by the CPU. De-referencing these
pointers on the GPU is also slow, because of the high latency of the main memory.
In both operations the dictionary approach is not beneficial. Transferring a vector of
integers to the GPU just for a simple comparison makes even less sense than processing
the strings there. In most scenarios string processing should indeed be done one the
CPU.

3.5. DBMS Functionality on GPUs

Because of the raw calculation power of modern GPUs, they provide new opportunities
for CPU bound tasks in MMDBMS. However, many operations in a MMDBMS are still
memory-bound, and cannot benefit from a more powerful co-processor, especially with
the PCIe bottleneck. Also, as we explained in this chapter that not every task is suitable
for GPU-execution. String processing and data-intensive tasks usually fail because of
the transfer bottleneck. In other cases the workload has to be large enough to fully
utilize the parallel architecture and to justify the overhead for starting a kernel.

Based on what we discussed in the last two chapters we draw a conclusion, how we
can speed up a DBMS with the help of a GPU. In a general DBMS we find four different
categories of tasks—depicted in Figure 3.10—where a gain in performance would have
a significant impact on the whole system, i.e., reduce the time users have to wait for
answers to their queries.

Application Logic (1) Most DBMS provide the possibility to integrate application logic
in form of Stored Procedures. This way the DBMS can execute logic that is written in
another language than SQL. C++ or Java might be simpler, provide more possibilities,

37

3. GPUs as Co-Processors

Applications

Query Optimization

SQL

Statistical
Methods2

Execution Engine

Stored
Procedures

1

DB
operators 4

Storage

Storage
Maintenance

3

DBMS

Figure 3.10.: Possible co-processing tasks in a DBMS

or more performance in some cases. The question is if and how we can use co-processors
to benefit from tasks of this first category.

Query Optimization (2) Users and applications usually access or modify the database
through SQL, which is a declarative language, i.e., it does not specify how a query has
to be executed. Hence, a DBMS first has to build a Query Execution Plan (QEP) that
tells the execution engine which operators to execute in which order. The performance
of the execution strongly depends on this plan. So the second category consists of all
tasks necessary for building and optimizing the QEP.

Storage Maintenance (3) Another important factor for the performance of the query
execution is the accessibility of the stored data. In general, storage aims for three targets:
a reduced memory footprint, fast reading, and fast modifications of the data. It is not
possible to optimize for all three. Indexes, for example, speed up reading/searching the
data, but need memory to be stored and have to be adjusted, when the data is modified.
Compression reduces the memory footprint, but modifying compressed data requires
additional effort. Usually a DBMS partitions the data in a way, so that frequently
modified data is stored in a different form than data that is only read. Data that is
accessed only seldom is archived, i.e., it is heavily compressed. The system moves data
automatically to the right partition based on usage, load and requirements of the system.

38

3.5. DBMS Functionality on GPUs

The faster this maintenance can be done, the more often we can do it. Additionally, if
parts of this maintenance can be offloaded to a co-processor, resources on the CPU are
free for other operations.

Query Execution (4) Our last and maybe most important category is the execution of
the QEP itself. Typical database operators such as joins, selections, and aggregations
have different characteristics and not every one is suitable for the GPU. Also, there are
different ways on how data flows from one operator to the next.

3.5.1. Integrating the GPU for Static Tasks into the DBMS

The CPU is a programmable universal processing unit in our computers. It can process
images, filter big amounts of data by certain criteria, calculate scientific formulas on
different representations of numbers (fixed point and floating point), analyze texts, and
everything else that is done with computers today. Since the CPU’s purpose is so generic,
it cannot be efficiently optimized for one task. A co-processor in contrast is optimized
for a subset of tasks, e.g., graphic processing in case of the GPU. It is not well suited
for operations that do not match the SIMD pattern, such as string processing. Hence,
we do not aim to build a DBMS that runs completely on the GPU, but try to identify
tasks in a DBMS suitable for GPU processing.

There are a number of tasks in a DBMS that can be considered independent from the
rest of the system. Therefore, it is possible to offload these tasks for computation to
the GPU without conceptual changes to the DBMS. The general pattern to distribute
a task in a parallel co-processor architecture is depicted in Figure 3.11. Phases one and
five are necessary because the GPU cannot access the CPU’s memory—they represent
the transfer bottleneck. Phases two and four are part of the necessary overhead for
parallelisation, resp. the distribution of work over different cores.10 Phases of this
pattern can overlap with other phases, partitioning can for instance be part of the
transfer. In some cases it might also be necessary to repeat phases, e.g., for iterative
algorithms such as the tasks presented in Sections 4.2.2 and 4.1.2.

10Partitioning and merging are also necessary for parallel implementations on a multi core CPU.

Transfer Input Data

Partition

CalculateCalculate Calculate

Merge

Transfer Result

Figure 3.11.: A general pattern for running tasks on the GPU

39

3. GPUs as Co-Processors

There is no guarantee that a task runs faster on the GPU. A general rule is that com-
putational intensive operations may benefit from offloading, i.e., the transfer bottleneck
is not a problem, because a lot of processing is done on a small amount of data. How-
ever, there are number-crunching algorithms that do not fit to the GPU’s programming
model [62]. Although the data transfer is not a problem, the CPU can solve the problem
faster and more efficiently. On the other hand, there are data-intensive problems that
can benefit from the GPU’s characteristics (mainly the high bandwidth on the device).
The small experiment of Section 3.4.3 shows that it is not easy to predict the perfor-
mance of an algorithm. But if certain criteria are given, there is a chance that we benefit
from offloading the task to GPU.

Criteria that indicate a performance gain when using the GPU:

1. There is an algorithm for the task that works in parallel.

2. There is an algorithm for the task that works massively parallel in a SIMD
fashion.

3. Processing the data on the CPU takes longer than transferring it to the GPU.

4. There is no need for additional transfers (swapping to main memory) in phase
three.

5. Transfer to the GPU and actual computation can overlap.

These five points can be categorized: the first two points deal with the suitability of a
task to the GPU’s architecture while points three to five consider the transfer bottleneck.

As we already explained in Section 3.1.2 we need to adjust processing to an architecture
with two levels of parallelism. Point one means that we first have to find a way to execute
the algorithm in parallel, whether this is on the CPU or on the GPU plays no role at this
point. In some cases this parallel execution already works in a SIMD fashion. Again,
Section 3.4.3 is an example for this. However, often it is necessary to introduce a second
level of SIMD parallelism (point two). In Section 4.3 we explain the difference in detail
by porting a simple sequential algorithm to the GPU. For this point the used data types
are also crucial: mostly, short strings or other variable-length types cannot be processed
efficiently in a SIMD fashion.

Point three is the most basic check for external co-processors and can be easily cal-
culated. We know the theoretical bandwidth of the PCIe bus and can calculate how
long it takes to transfer the input data for the task. No matter how good the algorithm
executed on this data is and even if we can perfectly interleave calculations and transfer:
if the transfer is slower than the CPU there is no chance that there can be any benefit.
Tasks with that characteristic are simply data-intensive. We take a look at one example
in Section 4.3. GPUs are sometimes proposed as a (part of the) solution for Big Data
problems, but most of these problems are actually memory bound and cannot benefit

40

3.5. DBMS Functionality on GPUs

from the GPU as long as there is the transfer bottleneck.

Point four does not mean that data larger than the GPU’s memory cannot be processed
efficiently (although it may be a first sign...), but the algorithm should be able to transfer
a partition of the data, process it, and proceed to the next one. If you repeatedly need
to transfer the same data back and forth in phase 3 because the free memory is needed
in between (known as swapping), there is a good chance that there will be no benefit in
using the GPU; or any other external co-processor.

If, however, the data can be processed while it is transferred (point five), and process-
ing is faster than transferring, the bandwidth is the only limit. So even if the CPU’s
throughput is just slightly lower than the PCIe bus’, there is a chance that the whole
process is faster on the GPU. Our micro benchmark in Section 3.4.3 is such an example.
In Chapter 4 we identify DBMS tasks that can be ported to the GPU based on these
rules. We focus on how they can be integrated into the system in a modular way.

3.5.2. Re-Designing Dynamic Tasks for Co-Processors

The tasks of the categories (1), (2), and (3) have a very important characteristic in
common. The workload to be processed can be called static: their input changes only in
the size of the data and parameters that influence the number of calculations per byte
needed. The tasks themselves are static as well: they are built by combining primitives,
e.g., by sequentially executing mathematical operations on matrices. These primitives
are usually executed in a known order and independent of the whole workload size, the
execution time for each primitive in comparison to the others can be predicted. In case
of matrix operations, there are for instance additions, which are uncritical compared to
a following matrix inversion. When trying to optimize such static tasks, the developer
looks for the hot-spot operations, where most time is spent, and optimizes these. When
using a co-processor, in many cases it is beneficial to just execute these operations on
the co-processor and leave the minor operations to the CPU.

Another technique to optimize a task is to merge the primitives in a way that there
are no borders resp. synchronization points between them any more. In Section 3.4.1 we
already discussed the negative impact of kernel starts on performance. Therefore, it is
crucial to put as much work as possible into one kernel call. It may even be possible to
merge small operations into a larger operation, which benefits from offloading. This of
course destroys maintainability and modularity of the program itself and is only possible,
because we know the order or primitives and with this certain characteristics of there
intermediate results.

Dynamic tasks consist of modular primitives that are executed following a plan given
at run-time. Without additional analysis we cannot predict which of these primitives
is the hot-spot operation. In Section 3.4.4 we have seen that the GPU is factors slower
in executing multiplications on small matrices. If we do not know the input size for
operations like this in advance and they are executed repeatedly, the whole task might
also be factors slower. Since a primitive can only be a kernel at first glance, there is
no possibility to merge them. Therefore, the plan-optimizer must be able to predict
intermediate result sizes and schedule operations accordingly. And, it has to do the

41

3. GPUs as Co-Processors

low-level-optimization as well. While the CPU itself optimizes the execution of instruc-
tions, the processing units on the GPU do almost no optimization. This is typical for
co-processors: the architecture is exactly designed to solve problems of a certain do-
main and every transistor is placed to provide as much calculation power as possible.
Therefore, operations have to be developed and optimized to the instruction-level. In
case of GPUs there is the additional challenge of considering the memory hierarchy and
schedule memory access and calculations correctly. Again, with kernels as primitives we
can use this memory hierarchy only inside. Even if results were small enough to keep
them in shared memory, they cannot be exchanged without transfer to the devices main
memory.

All these reasons show that the approach of having modular kernels as building blocks
is not going to be beneficial for dynamic tasks. So instead we propose to generate and
compile the kernels at run-time. This way, we can make use of the memory hierarchy
across primitives and merge them to achieve a small number of synchronization points
during execution. The compiler itself can do the low-level optimization. For the dynamic
task of query execution we explain this in Chapter 5.

3.5.3. Scheduling

While there are tasks that can benefit from the GPU as processing unit, most of them
only work well for certain inputs or certain parameters. If on the one hand the data to
be processed is too small, only some of the GPU’s cores can be used and the overhead for
starting a kernel and parallelizing the execution dominates the run-time. If on the other
hand the input is too large to fit into the GPU’s memory, it may be necessary to transfer
input data and intermediate results multiple times from main memory to device memory
and back. In these cases, the CPU should be used for calculations instead. The break-
even points change for every task and every hardware-combination. Especially, when
the execution time depends on multiple parameters such as the data type of the input
or the number of iterations, determining this point manually is not feasible anymore. It
may also be necessary to re-calibrate every time the hardware changes. A framework
that automatically learns the break-even points is necessary. We explain one approach
for such a framework in Chapter 6.

42

4. Integrating Static GPU Tasks Into a
DBMS

Researcher, companies as well as the open source community have already identified a
wide range of tasks that can be solved on the GPU with benefit. In Section 3.3 we listed
some libraries that are able to solve problems in different domains. In the old tradition
of picking the low-hanging fruits first, the challenge is now to identify tasks in a DBMS
that can benefit from these already available implementations.

As a first step we use a complete implementation for the K-Means algorithm on the
GPU and show how this can be integrated into the system. K-Means is an example
for application logic that is usually implemented by the DBMS-user and executed on
top of the DBMS. Algorithms like this are not an integral part of the system but only
use it to access the data stored in it. To the DBMS they are applications. These
applications usually use SQL to extract the data once and then stop interacting with
the system. However, the DBMS itself is often capable of executing this logic and users
gain a number of advantages if they do so. In Section 4.1 we show, what the benefits of
executing application logic in the DBMS are, how users can do this, and even use the
GPU for such an approach.

Computational intensive algorithms can of course also be found in the internals of
the DBMS. The query optimizer is one of the most complex components, which uses
algebraic and numeric algorithms to find the fastest way to execute a query based on
statistics. To do this, it has to solve algebraic equations with the help of matrix oper-
ations. In Section 4.2 we show, how we can use the CUBLAS library to enhance the
optimizer for better estimations with the help of the GPU. Instead of using a given
implementation—like in the section before—we combine the primitives of CUBLAS to
port a previously CPU-optimized algorithm to the GPU.

Another internal task is the Delta Merge, which is specific to SAP HANA and some
other column store DBMS as described in Section 2.2.4. In Section 4.3 we focus on the
first part of this process: the creation of the new dictionary. There is no satisfying GPU-
implementation for this problem yet. Hence, we have to develop an architecture-aware
algorithm from the ground up. In the end our results show that the CPU beats the GPU
easily because of the transfer bottleneck. Nevertheless, we can show that our algorithm
is faster than combining primitives of the thrust library to achieve the same results. The
dictionary merge is an excellent case study of how to port a simple inherently sequential
algorithm to the GPU’s architecture.

The three section explaining our tasks have the same structure: first, we explain the
task and where it is used in a DBMS, then we provide details about the implementation
and show the results of our evaluation. Before we conclude this chapter we discuss work

43

4. Integrating Static GPU Tasks Into a DBMS

that is related to the presented tasks in Section 4.4.

4.1. GPU Utilization with Application Logic

The most use-cases for Co-Processors in a DBMS can be found in the application logic.
While relational database operators are mostly data-intensive, compute-intensive algo-
rithms, e.g., used for predictive analysis, or from the field of machine learning, do mostly
just use the DBMS as data source and not as computing engine. The reason is that these
algorithms often cannot be expressed (efficiently) with SQL.

Therefore, applications usually just extract data from the database and process it
in-memory. By doing this, the application loses all the benefits a DBMS provides, e.g.,
internal indexes, which might be useful for the algorithm cannot be accessed. Also,
the result of the application’s calculations is not available to the DBMS directly. In
consequence, if relational operators are needed during or after the special application
logic was applied, the results have to be written to temporary tables or, and this is
mostly the case and also the worse solution, these operators are implemented by the
application. While the DBMS is specialized on these operators and therefore provides
efficient implementations, most applications use naive approaches and lose performance
and stability. In business logic we can often find nested loop joins for instance, which are
implemented in scripting languages and therefore achieve execution times in the order
of magnitude worse than DBMS operators. Another disadvantage of application logic
on top is that the database cannot be modified directly. Instead the application always
needs to map its copy to the database’s original.

To overcome these disadvantages, most DBMSs provide a way to use application logic
inside SQL statements, e.g., with the help of stored procedures. In this chapter we discuss
how we can use the GPU for application logic in a DBMS and if we can benefit from
that. Although we focus on MMDBMS in this thesis, we use DB2 for this experiment.
To the best of our knowledge, DB2 has the most versatile support for external functions
as we explain in the next section. SAP HANA will have similar support, called the
Application Function Library, but the necessary functionality was not available in time.
The K-Means implementation we use loads data into main memory before doing any
calculation, which would not be necessary in an MMDBMS. During calculation there
are no disk-operations, so we expect the results to be similar.

4.1.1. External Functions in IBM DB2

Co-processors can usually only be used with a low-level programming language such as
C. For CUDA and Intel’s Xeon Phi this code has to be compiled with a custom compiler.
In OpenCL the compilation of the code that runs on the device is handled by a system
library. The code responsible for calling the kernels can therefore be compiled with any
C-compiler—or even in another language—as long as the binary can be linked to the
OpenCL library.

Application logic written in vendor specific languages that are interpreted or compiled
at run-time by the DBMS itself are therefore not able to use co-processors unless the

44

4.1. GPU Utilization with Application Logic

DBMS vendor explicitly implemented an interface. However, some DBMS, e.g., IBM
DB2, are able to execute external functions—written by the user in C, Java and others—
provided by a shared library, i.e., a DLL on Windows and an .so-file on Linux. In DB2
the user has to create a User-Defined Function (UDF) that tells the system where to
find the shared library and maps the external function and its parameters to a method
that can be called from a SQL statement. It does not matter how the shared library
was created, as long as DB2 can find the specified function with the right interface in
the binary file. The external function can either return a table—and therefore be used
exactly like one in SQL statements—or it returns a scalar value such as the built-in sum
or other aggregation functions. UDFs accept custom parameters at call time and can
execute SQL statements to access the database.

Therefore UDFs are as flexible as if you would build applications on top of the
database—with protocols like Open Database Connectivity (ODBC) to access data—
and can be used in SQL statements as if their results were static data. They also allow
developers to use any third-party library or code in the application. In many cases you
can just use a ready application and replace the input and output logic as shown in the
next section. The ability to use these functions from SQL statements can be a huge per-
formance benefit because the DBMS can optimize with the knowledge about input data
and the function. It can for instance cache the result of functions and re-use it in other
statements. It may be able to stream and even parallelize processing by partitioning the
data without any interaction of the application developer [15].

4.1.2. K-Means as UDF on the GPU

K-Means is a clustering algorithm that partitions data into k clusters, in which each
record belongs to the cluster with the nearest mean [65]. Although Lloyd did not use
the name “K-Means”, his algorithm is usually used for the clustering [95]. Given a set
of coordinates with n dimensions, his approach works as follows:

1. initialize k means m1
1 ... m1

k randomly, e.g., by picking the first k elements from
the input set.

2. find the “nearest” mean for every coordinate xp: calculate the Euclidean distance:

Sti =
{
xp : ∀1 ≤ j ≤ k : ‖xp −mt

i‖2 ≤ ‖xp −mt
j‖2

}
every xp is assigned to exactly one of the k cluster sets Si.

3. the means are moved to the centers of every cluster:

mt+1
i = 1

|St
i |

∑
xpεSt

i

xp

Steps 2 and 3 are repeated until no resp. a low percentage of the coordinates xi is
assigned to another cluster.

45

4. Integrating Static GPU Tasks Into a DBMS

4.1.3. Implementation

The purpose of our experiment is to use an available implementation for Lloyds’s algo-
rithm that we can execute in DB2 without the need for major modifications. Therefore,
we used the open-source code developed by Giuroiu and Liao1 with their example of
clustering colors consisting of nine coordinates. The for us interesting part is how to
built a UDF with this code.

Instead of reading the input from a file, we want to get it from a table and the cluster
means should be returned as a table as well. So we implement our K-Means as external
table function, the definition is shown in Listing 4.1. The function parameters are the
number of clusters (k), a device identifier (CPU or GPU) and the name of the table with
the input coordinates. It returns a table with the coordinates of every cluster mean.
EXTERNAL NAME tells DB2 the name of the actual c function. The function itself
does always return the same result on the same input data: it is DETERMINISTIC and
does not access anything outside of DB2 (NO EXTERNAL ACTION). NOT FENCED
means that it will be executed in the DB2 process itself. This is performance critical but
also dangerous, because if the function failed unexpectedly, it would crash the DBMS
as well. None of the parameters of our function can be NULL: NOT NULL CALL
makes sure that DB2 never calls the UDF with a NULL parameter. LANGUAGE C,
PARAMETER STYLE DB2SQL and DBINFO describe the interface for the function.
For UDFs with the keyword SCRATCHPAD DB2 provides a memory segment with the
size of 100 bytes, that is preserved between function calls. We get to the meaning of that
when we describe the code. DB2 is able to split up the input in partitions and call the
function once for every partition in parallel. We need to prevent this with DISALLOW
PARALLEL because the parallel K-Means-logic is executed inside of the function. Other
possible parameters for UDFs are described in [15]. The KMEANSCOLORUDF-function
can be called with select * from KMEANSCOLORUDF(2,’CPU’,’COLORS’) as soon as we
have the shared library in place.

Listing 4.1: The definition of the K-Means UDF

1 CREATE FUNCTION KMEANSCOLORUDF(NUMCLUSTERS SMALLINT , DEVICE CHAR

(3), TABLE_NAME VARCHAR (255))

2 RETURNS TABLE(C1 DOUBLE , C2 DOUBLE , C3 DOUBLE , C4 DOUBLE , C5

DOUBLE , C6 DOUBLE , C7 DOUBLE , C8 DOUBLE , C9 DOUBLE)

3 EXTERNAL NAME ’cudaudfsrv!kmeansColorUDF ’

4 DETERMINISTIC

5 NO EXTERNAL ACTION

6 NOT FENCED

7 NOT NULL CALL

8 LANGUAGE C

9 PARAMETER STYLE DB2SQL

10 SCRATCHPAD

11 DISALLOW PARALLEL

12 DBINFO

1available at https://github.com/serban/kmeans

46

4.1. GPU Utilization with Application Logic

Table functions like this are design in an Open-Next-Close (ONC) fashion, i.e., they
are called once for every row they return. With this behavior they can be used like other
relational operators in the Volcano model [36]. We get back to the details of this model
in Chapter 5. One of the parameters given to the external function by DB2 marks which
of the three phases this call belongs to. The scratchpad we mentioned earlier can be used
to store pointers to allocated memory between calls. In case of the K-Means function
we do all the calculations on the open-call and store the result to return it row-wise on
every next-call. The work cannot be split between different calls because the first result
is only available when the K-Means algorithm completed. The close- or final -call is used
to free the memory used for the result.

Listing 4.2 shows the code for the open call. The original implementation by Giuroiu
and Liao reads its input from Comma Separated Values (CSV)- or binary files into main
memory. Keeping the data in main memory makes sense, because it is accessed multiple
times during the calculation. Therefore, we also copy the data from a database table
to a main memory segment. To read the data from the table as shown we can use a
SQL from inside the UDF. DB2 supplies a custom pre-processor to provide convenient
macros, such as EXEC SQL PPREPARE, for SQL execution. These macros are replaced
with actual C-code before the compilation of the shared library.

In lines 1–6 we first query the number of records from the table to allocate memory
(line 9/10) before the actual data extraction. The coordinates are then fetched and
copied to main memory row by row in lines 12–27. In line 29 we allocate memory for
the result and store the pointer in the scratchpad pScratArea. The unmodified code of
the K-Means implementation is called in line 31 for the GPU or line 36 for the CPU.
The threshold parameter responsible for the number of iterations in K-Means is fix in
our implementation but could also be a parameter of the UDF. In lines 41 and 42 the
input data is deleted from main memory because it is not needed anymore. The pointer
to the result-row, the only data that has to be stored in the scratchpad, because it is
needed for the next calls, is set to 0 in line 44.

Listing 4.2: Code for the open call (stripped error checking)

1 sprintf(strSmt ,"SELECT COUNT (*) AS count FROM %s",table);

2 EXEC SQL PREPARE stmt10 FROM :strSmt;

3 EXEC SQL DECLARE c40 CURSOR FOR stmt10;

4 EXEC SQL OPEN c40;

5 EXEC SQL FETCH c40 INTO :count :countInd;

6 EXEC SQL CLOSE c40;

7
8 pScratArea ->numObjs = count;

9 objects = (float **) malloc(pScratArea ->numObjs * sizeof(float*));

10 objects [0]= (float*) malloc(pScratArea ->numObjs * pScratArea ->

numCoords * sizeof(float));

11
12 sprintf(strSmt ,"SELECT C1 ,C2 ,C3 ,C4 ,C5 ,C6 ,C7 ,C8 ,C9 FROM %s",table);

47

4. Integrating Static GPU Tasks Into a DBMS

13 EXEC SQL PREPARE stmt20 FROM :strSmt;

14 EXEC SQL DECLARE c50 CURSOR FOR stmt20;

15 EXEC SQL OPEN c50;

16 EXEC SQL FETCH c50 INTO :c1 :c1Ind , :c2 :c2Ind , :c3 :c3Ind , :c4 :

c4Ind , :c5 :c5Ind , :c6 :c6Ind , :c7 :c7Ind , :c8 :c8Ind , :c9 :

c9Ind;

17 objects [0][0]= c1; objects [0][1]= c2; objects [0][2]= c3;

18 objects [0][3]= c4; objects [0][4]= c5; objects [0][5]= c6;

19 objects [0][6]= c7; objects [0][7]= c8; objects [0][8]= c9;

20 for(int i=1;i<pScratArea ->numObjs ;++i) {

21 objects[i] = objects[i-1] + (pScratArea ->numCoords);

22 EXEC SQL FETCH c50 INTO :c1 :c1Ind , :c2 :c2Ind , :c3 :c3Ind , :c4

:c4Ind , :c5 :c5Ind , :c6 :c6Ind , :c7 :c7Ind , :c8 :c8Ind , :c9 :

c9Ind;

23 objects[i][0]=c1;objects[i][1]=c2;objects[i][2]=c3;

24 objects[i][3]=c4;objects[i][4]=c5;objects[i][5]=c6;

25 objects[i][6]=c7;objects[i][7]=c8;objects[i][8]=c9;

26 }

27 EXEC SQL CLOSE c50;

28
29 pScratArea ->membership = (int*) malloc(pScratArea ->numObjs *

sizeof(int));

30 if(strcmp(device ,"GPU") == 0) {

31 pScratArea ->clusters = cuda_kmeans(objects ,

32 pScratArea ->numCoords , pScratArea ->numObjs ,

33 pScratArea ->numClusters , threshold ,

34 pScratArea ->membership , &loop_iterations);

35 } else {

36 pScratArea ->clusters = seq_kmeans(objects ,

37 pScratArea ->numCoords , pScratArea ->numObjs ,

38 pScratArea ->numClusters , threshold ,

39 pScratArea ->membership , &loop_iterations);

40 }

41 free(objects [0]);

42 free(objects);

43
44 pScratArea ->result_pos = 0;

There is no actual application logic in the next and close of our UDF as shown in
Listing 4.3. In every next call, we first check if DB2 already fetched all cluster means
(line 2). If this is the case, we set the SQLUDF STATE to inform DB2 that there are no
more result rows. Else we copy the data to DB2’s result row (7–15) and increment the
result position (17). The close-call just frees the temporarily allocated memory (20-23).

Listing 4.3: Code for the next and close call (stripped error checking)

1 case SQLUDF_TF_FETCH:

2 if (pScratArea ->result_pos >= pScratArea ->numClusters)

3 {

48

4.1. GPU Utilization with Application Logic

4 strcpy(SQLUDF_STATE , "02000");

5 break;

6 }

7 i = pScratArea ->result_pos;

8 *o_C1 = (double)pScratArea ->clusters[i][0];

9 *o_C2 = (double)pScratArea ->clusters[i][1];

10 *o_C3 = (double)pScratArea ->clusters[i][2];

11 *o_C4 = (double)pScratArea ->clusters[i][3];

12 *o_C5 = (double)pScratArea ->clusters[i][4];

13 *o_C6 = (double)pScratArea ->clusters[i][5];

14 *o_C7 = (double)pScratArea ->clusters[i][6];

15 *o_C8 = (double)pScratArea ->clusters[i][7];

16 *o_C9 = (double)pScratArea ->clusters[i][8];

17
18 pScratArea ->result_pos ++;

19 strcpy(SQLUDF_STATE , "00000");

20 break;

21 case SQLUDF_TF_CLOSE:

22 free(pScratArea ->membership);

23 free(pScratArea ->clusters [0]);

24 free(pScratArea ->clusters);

25 break;

Some additional code is needed to free memory and give an error message in case
something goes wrong. The complete code can be found online under https://github.
com/hannesrauhe/db2_cuda_udf.

4.1.4. Evaluation

We compare the UDF with the original implementation that reads from CSV files and
outputs to the console, both on CPU and GPU. All measurements are conducted on the
Z600 equipped with a Tesla C2050. 2 In Figure 4.1 we compare the total run-time of the
four implementations for different k and input sizes. K has an influence on the number
of iterations, because coordinates are more often assigned to other clusters. Additionally,
more euclidean distances have to be calculated in step 2 of the algorithm if more cluster
means are given.

For k = 2 the problem is data-intensive and the two clusters can be calculated in less
than 100 ms with the original implementation. There is almost no difference between
CPU and GPU, because the time needed for I/O dominates the execution time. It is sur-
prising that the UDF is much slower in accessing the data than the file-based operation.
Based on our experiment we find that reading 100 rows in DB2 takes approximately
1 ms longer than reading it as CSV from disk. This may be a result of fetching row by
row with SQL or with the way we have to assign the read coordinates to the variables
in the UDF.

For k > 2 I/O becomes less and less dominant, since more time is spent on the

2See Appendix A.1 for Details on Hardware.

49

https://github.com/hannesrauhe/db2_cuda_udf
https://github.com/hannesrauhe/db2_cuda_udf

4. Integrating Static GPU Tasks Into a DBMS

actual calculation. Independent of the implementation we can see that the execution
time not necessarily gets longer with a greater input size. With k = 8 and k = 32
for instance the data set with 45 000 rows is clustered faster than the larger set with
50 000 coordinates. This happens because the number of iterations—and the execution
time with it—strongly depends on coordinates itself. Every data set for a fixed input
size is randomly generated and therefore not related to the other sets.

With k = 8 we can see that I/O is still dominating, but also that the GPU is signif-
icantly faster in both implementations. While the pure computation time on the GPU
is almost the same as with a smaller k, the CPU takes already three times longer. This
becomes even more obvious with k = 32. The GPU is significantly faster than the CPU
with the original implementation as well as with the UDF. With k = 128 the GPU
implementation is only about 4 times slower than in the k = 2 version, while the CPU
takes 70 times as long for the largest set. In relation the data input method plays no
role anymore for this compute-intensive task.

4.1.5. Conclusion

In this section we have shown how we can integrate application logic that is executed by
the DBMS itself. This has a number of advantages, compared to applications that use
files for I/O or DBMS as a simple data source/sink. While file operations can be simple
and fast, they lack flexibility when filter logic has to be applied or different input sources
or output sinks are necessary. This extended I/O might be more complicated than the
actual application logic. By using a DBMS as data source, application developers can
use relational operators to pre-filter data before they apply the actual logic. Yet, they
cannot use these operators on their intermediate or final results, because the data is not
accessible to the DBMS. Here, the usage of UDFs allows a full integration of application
logic into the database. The application becomes a relational operator itself and can be
used in execution plans with all the usual benefits.

We have also shown that the effort to implement already existing application logic
into UDFs is minimal and comparable to providing the logic needed to read and parse
values from files. An implementation that runs on top of a DBMS requires similar effort
to open and manage the DBMS connection.

UDFs are almost as flexible as stand-alone applications. For DB2 only some program-
ming languages are supported, but since these are the popular ones, this will usually not
be the limitation. Technically it is no problem to provide support for other languages
as well, as long as it is possible to build a shared library. It was no problem to use
CUDA in our shared library. Still, there are some limitations when it is necessary to use
other shared libraries in the implementation of the UDF. In general they must either be
loaded by DB2 (we did not find a solution for that) or they must be statically linked.
We had no success in doing this with OpenMP; this is explicitly not recommended by
the GCC developers; so we could not evaluate the parallel CPU implementation in our
experiments. However, these problems are the exception, the general limitations are
minor. DB2 or other systems might even be capable of lifting these all together in the
future.

50

4.1. GPU Utilization with Application Logic

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of Clusters k: 2

Num. of Input Coord. in Thousands

E
x
ec

u
ti

on
T

im
e

[s
]

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of Clusters k: 8

Num. of Input Coord. in Thousands

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5
Number of Clusters k: 32

Num. of Input Coord. in Thousands

E
x
ec

u
ti

on
T

im
e

[s
]

0 10 20 30 40 50

0.0

2.0

4.0

6.0

8.0 Number of Clusters k: 128

Num. of Input Coord. in Thousands

GPU/CSV CPU/CSV GPU/DB2 CPU/DB2

Figure 4.1.: K-Means on CPU and GPU

51

4. Integrating Static GPU Tasks Into a DBMS

As we have seen, the performance of I/O operations becomes less important, the more
computations are necessary on the data. In our experiment the file operations were
faster than the DBMS, but this might change especially with MMDBMS or if different
access patterns are necessary. The important discovery is that there is no difference for
the run-time of actual calculations. We could show that we can benefit from the usage
of GPUs in UDFs for compute-intensive calculations. The low effort for implementation
combined with the advantages of having application logic in form of a relational operator
clearly outweighs the minor performance loss for compute-intensive tasks.

4.2. GPU-assisted Query Optimization

In the last section we discussed K-Means as representative task triggered by the DBMS
user. In this section we focus on compute-intensive tasks that are used by the system
for its everyday operations, e.g., in the query optimizer. Before a query is executed, the
DBMS creates an execution plan and chooses the order and type of operators for fast
execution. The optimization is based on statistical methods and heuristics and can get
very compute-intensive. Of course the optimization should be done in a fraction of the
time needed to execute the user’s query itself. Because of the limited time span, not
all methods to enhance the plan are used, although they might lead to better execution
plans. By using the GPU’s raw execution power to apply more complex optimization
methods in a similar time span, we can achieve better query execution times. We
describe the problem of selectivity estimations and introduce the Maximum Entropy
(ME) approach proposed by Markl et al. [67]. The Newton method we use to solve the
ME problem is not only faster on the CPU than Markl’s original implementation but
can also be executed on the GPU. Especially when handling large matrices the GPU is
significantly faster than the CPU as our evaluation shows.

4.2.1. Selectivity Estimations and Join Paths

Since SQL is a declarative language, there are a number of different ways to actually
execute a query in a RDBMS. The query optimizer is responsible for finding the optimal
access path for a query [38]. Based on knowledge about the data stored in the database
it decides about the type and order of relational operators to execute. A simple example
for this is a select statement with two conditions p1 and p2. If the selectivity s1 for p1 is
higher than s2, i.e., more rows are returned if p1 is the only condition than if p2 is the
only condition of the statement, the optimal plan would evaluate p2 first. This way the
second operator has less values to check and can finish faster. In this simple example
only the selectivities of single predicates are needed. If the query requires a join of a
relation with the result of the above selection, the optimizer chooses the join operator
based on the size estimation of this result. Therefore, we need to know the combined
selectivity s1,2for p1 and p2.

While the selectivity of a predicate on a single attribute can be determined fairly
accurately, e.g., by relying on histograms, doing so for conjunctive predicates involv-
ing the joint frequency distribution of multiple attributes is much harder. Usually, we

52

4.2. GPU-assisted Query Optimization

assume that columns are independent from each other and calculate the combined selec-
tivity s1..sn of n predicates p1..pn by multiplying their selectivities. However, often this
so-called independency assumption is not correct: a very common example in research
literature is a table that stores car models and car makers among other attributes. Ob-
viously the independency assumption would lead to wrong estimations and non-optimal
execution plans, because usually a model is only made by one car maker. The same is
valid for tables storing cities, zip codes and countries. To overcome the problem, some
DBMS store Multivariant Statistics (MVS). They are approximated for a subset of com-
binations with the help of multi-dimensional histograms [84] for instance. However, it is
not feasible to calculate, store, and update these joint selectivities for every combination
of columns. Instead the available knowledge has to be combined if a query requires a
joint selectivity not stored.

The problem of calculating estimations when joint selectivities are available is compli-
cated, because there are different ways of combining available selectivities. Let’s assume,
that we need the selectivity s1,2,3 and have MVS for s1,2 and s2,3 as well as all single
selectivities. The needed selectivity can be calculated in two ways: sa1,2,3 = s1,2 ∗ s3 or

sb1,2,3 = s1,3 ∗ s2. It is likely that sa1,2,3 6= sb1,2,3. We cannot predict which of the two es-

timations is better. Therefore, traditional optimizers decide for one of the two choices3

and ignore available knowledge. To ensure that every plan is costed consistently the
optimizer also has to remember each choice and make sure that it does not use another
choice for similar plans. This approach therefore requires additional book-keeping. Even
worse, since once discarded MVS are also discarded later, the optimizer tends to use the
plans about which it know the least [67]. A method to use all available knowledge would
certainly produce better estimations and ensure consistent plans. The ME approach for
selectivity estimations proposed by Markl et al [67] is such a method, but it also requires
calculation power.

4.2.2. Maximum Entropy for Selectivity Estimations

To estimate the selectivities we consider all available knowledge. The principle of ME
assumes that the best estimation is the one with the largest entropy [40]. Entropy is a
measure of uncertainty for a probability distribution q = (q1, q2, ...) defined as

H(q) = −∑
i
qi log qi

For Markl’s approach we try to maximize the entropy function H(q) while keeping it
consistent with the knowledge about certain selectivities.

Without any knowledge there is only one single constraint that the sum of all proba-
bilities equals 1. The ME principle assumes a uniform distribution. If only single column
selectivities are use, the ME principle is similar to the independency assumption. How-
ever, it allows us to also consider MVS as well.

To build the system of linear equations all possible combinations of a given set of
predicates P = (p1, p2, ..., pn) need to be considered. A combination is called atom and
denoted as binary string b of length n for a term in disjunctive normal form, e.g., one

3Of course, there is also the third way to simply multiply the three single selectivities.

53

4. Integrating Static GPU Tasks Into a DBMS

atom for n = 2 is: p1∧¬p2, b = 10. The selectivity for this atom is denoted as x10. Each
predicate pi is influenced by one or more atoms. The set C(i) denotes all contributing
atoms. In the example above x10 and x11 contribute to p1: C(1) = {10, 11}. If a
selectivity si is known, i is part of the knowledge set T .

The selectivities sj for j /∈ T are calculated according to the ME principle by solving
the constrained optimization problem:

min
xb|b∈{0,1}n

∑
b∈{0,1}n

xb log xb

constrained by the known selectivities in T :∑
b∈C(i)

xb = si, i ∈ T

In the example above s1 and therefore the following constraints are given:

(I) s1 = x10 + x11
(II) s∅ =

∑
bin{0,1}n

xb = 1

S∅ is always known. In general a numerical method is needed to solve the problem.
Because of the consideration of all possible combinations, the time needed to compute
the solution grows exponentially with the number of predicates n. Markl et al. proposed
the iterative scaling algorithm. In the following section we present the Newton approach,
which is also suitable for execution on the GPU.

4.2.3. Implementation of the the Newton Method

Listing 4.4: ”The Newton approach”

1 function [u v] = boltzmann_shannon_newton(A,d,abort_cond);

2 %m < n

3 [m,n] = size(A);

4 v = zeros(m,1); u = zeros(n,1); Aty = zeros(m,1)

5 criterion = abort_cond + 1;

6 eb = exp (1)*d;

7
8 tic

9 while criterion > abort_cond

10 u_old = u;

11
12 eAty = exp(-Aty)

13 rs = eb - A*eAty

14 AA = A*diag(eAty)*A’;

15 dd = AA\rs;

16 v = v - dd;

17
18 criterion = A’*v;

19 u = exp(-1 - criterion);

20 criterion = norm(u-u_old ,inf);

54

4.2. GPU-assisted Query Optimization

21
22 Aty = A’*v

23 j = j+1;

24 end

25 toc

26 j

The Newton approach shown in Listing 4.4 iteratively calculates an approximation for
the selection based on the values of the last iteration. In matrix A there is a column
for every predicate and a row for every possible combination of these predicates, i.e., A
has a size of m× 2m. d contains the known selectivities. The shown code estimates the
selectivities u for all possible combinations of predicates with an iterative approach. The
iteration stops as soon as the difference between the previous and this iteration’s result
gets smaller than the specified accuracy abort cond. Because an iteration depends on
the previous one a parallel execution of the outer loop is not possible.

Therefore, we can only use a parallel implementation for the algebraic functions to
calculate the intermediate vectors and matrices. However, since the matrix grows expo-
nentially with the number of predicates, the computation easily justifies the overhead.
No calculation is done on the CPU since this would require to transfer the large matrix.
Instead, we generate the matrix on the GPU, i.e., only the known selectivities need to
be transferred. Afterwards all computations involving the matrices, even the ones that
would run faster on the CPU, are executed on the GPU to avoid transfer of interme-
diate results. However, every matrix operation requires a full synchronization—calling
a new kernel—from the CPU. Hence, the loop runs on the CPU, as well as check of
the abort condition.4 For the actual matrix operations the CUBLAS library is used (cf.
Section 3.3).

4.2.4. Evaluation

Markl et al. already proved that queries benefit from the better estimations [67]. Here
we show that we achieve the same quality faster. In Figure 4.2 the execution times
for the different approaches on our K20 machine are shown.5 The results of Markl’s
algorithms are marked as Original, our Newton approach is shown in three variants: the
sequential implementation, which uses one CPU core, the Multi-Core implementation
(N. MC)), and the GPU implementation (N. GPU). Both plots show the same numbers,
the left-hand one on a logarithmic scale, the right-hand one on a linear scale for the
important sub-second time-span. Longer running estimations are impractical, because
then the query optimization time may take longer than the actual query execution time.
However, this is only a rule of thumb. Surely, there are scenarios where it makes sense
to wait longer for a good estimation as well as scenarios, where a second is also much
longer than the actual execution.

4In a second implementation we use Dynamic Parallelism and check the abort condition on the GPU
as well. Similar to our results in Section 3.4.1 the performance is worse.

5See Appendix A.1 for Details on Hardware.

55

4. Integrating Static GPU Tasks Into a DBMS

5 10 15 20 25

0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

1s

No of Conjuncts

E
x
ec
u
ti
o
n
T
im

e
[s
]

Splitting
Original
Newton
N. MC
N. GPU

8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

No of Conjuncts

Figure 4.2.: Comparison of run times of the maxentropy algorithms

In Figure 4.2 we see that the original approach determines an estimation within a
second for up to 12 predicates on our hardware. The Newton approach is 10 times
faster than the original. It calculates an estimation on up to 14 predicates, the OpenMP
implementation on 16, and the GPU implementation even on 19 predicates; all within
one second. Within 10 ms we can estimate selectivities for up to 10 conjuncts with the
help of our Newton-approach. The break even-points are at 8 conjuncts, where the
parallel CPU implementation is faster than the sequential one, and 11, where the GPU
is the fastest of all implementations. There is a considerable variance in the performance
of the original and the splitting algorithm of up to 50% depending on the data. The
variance for the parallel CPU implementation is also very high, which might be due to
the partitioning of the OpenMP framework. The sequential Newton algorithm as well
as the GPU implementation deliver stable run times, which vary around 10–15%.

Overall we can conclude that the GPU is well suited for this type of workload. Because
of the low amount of data to be transferred, the PCIe bus is not the bottleneck. The
amount of of memory on the external card is also no problem for estimations up to
23 predicates. At this point the CPU takes more than 10 min to calculate. The ME
approach seems to be not an option for this size. The GPU delivers the most stable
run times and speedups up to 100 times compared to one core on the CPU and up to
10 compared to 16 cores. In contrast to the query execution experiments discussed in
Chapter 5, the break-even point is easy to find for an optimizer. As long as the hardware
does not change, it can easily decide whether to use GPU or CPU for the estimation
based on the number of predicates.

4.2.5. Conclusion

In this section we have shown that we can benefit from GPUs by using them for the com-
plex calculations executed by the query optimizer. Using the functions of the CUBLAS -

56

4.3. The Dictionary Merge on the GPU: Merging Two Sorted Lists

library requires only minimal knowledge about the GPU’s architecture. Markl et al.
have already shown that it is worth to use the ME approach for query optimization,
because usually there is less time needed for calculations than we save during execution
of the query. However, the more predicates are involved in the query the longer the
optimization takes; at some point it is better to execute a query plan based on less accu-
rate estimations. Markl states that one second is the upper limit for optimization time.
With the GPU we were able to estimate selectivities for up to 19 predicates within one
seconds compared to 14 on the CPU. At this point we are 80 times faster than the same
approach on a single thread on the CPU and 300 times faster than the original method.
The GPU also out-runs all cores on our machine by a factor of 10. Additionally, the
CPU is free for other operations during selectivity estimation.

4.3. The Dictionary Merge on the GPU: Merging Two Sorted
Lists

The Delta Merge process in HANA is necessary to integrate changes from the delta buffer
into the main storage of the database. It has to be executed regularly and therefore sets
systems with a high number of tables under frequent load. If it was possible to offload
this algorithm to the GPU, this would free resources on the CPU and in consequence
possibly speed up the whole system.

As we explained in Section 2.2.4, dictionary encoding is used in main as well as in
delta storage. The creation of a common dictionary for the new merged main storage
is therefore the first step of the merge. Both dictionaries can be accessed in an as-
cending order, hence, the new dictionary can be created by simply iterating over the
two sorted structures as listed in Algorithm 1. This is a well-known problem, where
parallel implementations for CPU and GPU are widely available. The GNU C++ li-
brary provides a parallel version of std::merge, which can be activated with a simple
compiler switch [25]. CUDA’s Thrust library—equivalent to the C++ standard library
on NVIDIA GPUs—also provides a parallel implementation [48].

However, values may occur in both dictionaries. Therefore we need to modify the
algorithm in a way that it eliminates these duplicates while merging. The modified
pseudo code for the sequential algorithm is listed in Algorithm 2. We will refer to this
algorithms as Dictionary Merge. A GPU implementation can be achieved by executing
the unique primitive of the Thrust library after the merge primitive. Unfortunately, this
means touching the data twice and synchronizing in between. Because performance is
essential for this task, we decided to implement our own merge algorithm for the GPU
that does merging and duplicate removal in one run.

4.3.1. Implementation

In Section 3.1.2 we explained that the GPU is a mixed architecture in the sense of
Flynn’s taxonomy. A parallel algorithm can only use such an architecture efficiently if
it provides two levels of parallelism. On the case of the first part of the Delta Merge,

57

4. Integrating Static GPU Tasks Into a DBMS

Algorithm 1 Sequential merge algorithm

Input: listA, listB
Output: listC

1: iA = 0
2: iB = 0
3: iC = 0
4: while iC < sizeof(listA + listC) do
5: if listA[iA] <= listB[iB] then
6: append(listC , listA[iA])
7: iA = iA + 1
8: else
9: append(listC , listB[iB])

10: iB = iB + 1
11: end if
12: iC = iC + 1
13: end while

the creation of the dictionary, we show how algorithms have to be designed to meet this
requirement.

First layer of parallelism

The parallelization of the Dictionary Merge for CPUs is straight forward. It is obvious
that the loop cannot be executed in parallel without an modification since every loop
iteration depends on the previous one. However, we can use the divide and conquer
approach in three phases: partition both lists, execute the sequential merge on every
pair of partitions, and merge the partitioned results in the end. A small amount of
calculations is necessary in the first phase to find corresponding partitions: we split the
first list in chunks of equal size and do a binary search for the last element of every
chunk to find the right partition boundaries of the second list. For the second phase we
execute the sequential merge algorithm on every pair of partitions.

In general it makes sense to use as many threads as cores are available on the CPU.
If less threads are used some cores are idle during calculation. This is called under-
subscription. Over-subscription, i.e., using more threads than cores, is also not optimal,
because then one core has to work on more than one thread. This would lead to context
switches: cache and registers are flushed to load the other thread’s from main memory.
Depending on the Operating System (OS) scheduler this could happen multiple times per
partition. However, if every core works on only on partition pair, there is a high chance
of under-subscription, because threads that work on small partitions finish early, while
large partitions are still processed. To balance the workload it is therefore necessary to
use one thread for multiple partitions. As this is a general problem, frameworks such as
Intel’s Thread Building Blocks (TBB) introduce an abstraction layer. Instead of threads,
the developer starts tasks. Theses tasks are assigned to the optimal number of threads,

58

4.3. The Dictionary Merge on the GPU: Merging Two Sorted Lists

Algorithm 2 Dictionary Merge: merge algorithm with duplicate elimination

Input: listA, listB
Output: listC

1: iA = 0
2: iB = 0

Ensure, the greatest element is at the end of listA:
3: append(listA, last(listA) + last(listB))
4: while iA < sizeof(listA) do
5: if listA[iA] < listB[iB] then
6: append(listC , listA[iA])
7: iA = iA + 1
8: else if listA[iA] > listB[iB] then
9: append(listC , listB[iB])

10: iB = iB + 1
11: else
12: append(listC , listA[iA])
13: iA = iA + 1
14: iB = iB + 1
15: end if
16: end while

Remove the element inserted in line 3:
17: pop(listC)

solving the problem of under- and over-subscription as long as enough tasks are queued.
For the unmodified merge, it is not necessary to combine the merge-results of each

partition, because their size is known in advance, so the result partitions can be written
directly to the target memory. However, for the parallel version of the Dictionary Merge,
we do not know the size of the result partition, because the number of duplicates is not
known. Therefore, we have no choice but to create every result partition in a memory
segment that is large enough to hold the number of elements in both lists, which is the
maximum size in case there are no duplicates at all. Hence, the third phase is necessary
to copy the results of each thread to contiguous memory segments. It is possible to do
this in parallel as well, but we have to determine the right position for every intermediate
result by calculating the prefix sum over all intermediate result sizes.

Second layer of parallelism: SIMD

There are two problems with the first layer approach on GPUs. First, to use every core
on the GPU we would need approximately 1000 partitions. However, to fully utilize these
cores at least 10 000 partitions would be necessary as shown in Chapter 5.5.4. Therefore,
the overhead for finding the partition boundaries and copying the results in the end
would get significant. Second, executing this algorithm in parallel does not favor the
SIMD architecture nor the memory architecture of the GPU.

59

4. Integrating Static GPU Tasks Into a DBMS

Global Memory

a b c

Shared Memory

a1 b1α1 β1

00000... 000

00000... 000

α1β1

1. fetch

2. sort

3. duplicate detection

00101... ...01001... ...000

α1β1

4. prefix scan

00112222... ...56667... ...777

α1β1

5. fetch a2 α2

00000... 000

b2 β2

 2.

Figure 4.3.: The parallel zip merge algorithm

We propose an algorithm that can be executed in parallel in one workgroup and
is adapted to the GPU’s memory hierarchy. Instead of working element-wise like the
sequential algorithm, we compare blocks of both lists as shown in Figure 4.3. Each
step of our algorithm is vectorized and we minimize the access to device memory by
copying blocks of both lists into the shared memory of the SMX in step 1. In step 2
we use the bitonic sort implementation of the CUDA SDK [74] to sort all elements in
shared memory. In step 3 every element is compared with its right neighbor. We use
another segment of shared memory to mark the position of every duplicate with a one.
In step 4 the prefix sum implementation from the CUDA SDK is used to sum up all
ones in this segment. At this point we know how many duplicates occur left of every
element in the sorted list. With this knowledge we can copy the sorted list back to the
global memory (c) and remove the duplicates in the process. The problem is, that one
fetched block can overlap with the next block in the other list. After each fetch we have
to compare the greatest elements in both lists α and β. If α > β, all elements (from
both lists) smaller than β are in shared memory or have been processed earlier. As a
consequence all elements greater than β stay in shared memory in step 5 and because
these elements must be from list a, we fetch lesser elements from this list for the next run.
If α < β we fetch a smaller amount of elements from list b instead. The threads have

60

4.3. The Dictionary Merge on the GPU: Merging Two Sorted Lists

to be synchronized after each step and shared memory is used to communicate between
threads. This is cheap on the thread-level, but very expensive on the workgroup-level.
Therefore, we use this algorithm only as second layer of parallelism, while we use the first
layer to distribute work between workgroups. We vectorize execution inside workgroups
and distribute the work in partitions over a higher number of these. We call this approach
for the Dictionary Merge Zip Merge.

4.3.2. Evaluation

We are interested in two things for our evaluation. First, is the Zip Merge faster than the
two combined primitives of the Thrust library? Second, can we beat the CPU with this
approach? Our experimental setup is a possible merge scenario: listA, the dictionary
of the main storage, has five times as many elements as listB, the delta dictionary, and
half of the elements of listB also occur in listA. In Figure 4.4 the kernel execution time
of the two GPU implementations and the time needed for partitioning and merging on
the CPU are shown; the Z600 with the Tesla C2050 was used for the experiment.6 Our
implementation performs between 20 % and 40 % better than the Thrust library, which
is expected because it touches the data only once. However, it is also only 20 % to 40 %
faster than a sequential CPU implementation.

23 24 25 26 27 28 29 210

0

100

200

300

Number of elements in A in 100 000

T
im

e
[m

s]

23 24 25 26 27 28 29 210

0

200

400

600

Number of elements in A in 100 000

Zip Merge
Thrust
CPU

Figure 4.4.: Comparison of Thrust’s merge/unique[75] and our implementation
kernel execution time left, total execution time right

For the total measurement we included the final copy from the partition results to
the target memory. For the sequential version this is necessary, because we had to
allocate enough memory to save the largest possible result in case no duplicates occur
in both dictionaries. The real size of the result is first known, when the process finished.
Therefore we have to allocate the right amount of memory in the end and copy the result
there. In a DBMS this may be handled by special allocators. On the GPU this is part of
the PCIe transfer to main memory. The CPU implementation—using only one core—is

6See Appendix A.1 for Details on Hardware.

61

4. Integrating Static GPU Tasks Into a DBMS

significantly faster than transferring the lists to the GPU and merging the lists there
as the right-hand curve in Figure 4.4 shows. In contrast to the recoding algorithm in
Section 3.4.3 the GPU does not scale better than the CPU with a growing input size.

Unfortunately, we cannot use streaming either because of the way we have to partition
the lists in the beginning. The overhead needed to parallelize and vectorize the algorithm
to fit onto the CUDA architecture is too high to compensate for the transfer.

4.3.3. Conclusion

In this section we were able to show that we cannot expect the GPU to speed-up all
operations executed by the DBMS. Despite the effort we spent on porting the native
dictionary merge algorithm we were only able to achieve little speed-up compared to a
sequential CPU implementation. If we consider the necessary transfer times the GPU
even is considerably slower than the CPU. There are a few reasons why this algorithm
is not a good match for the GPU considering the criteria from Section 3.5. There is a
working parallel version for the CPU that introduces negligible overhead for partitioning,
so point 1 is fulfilled. However, as one can already guess from the complexity, the Zip
Merge involves much more calculation than the simple Algorithm 2. The same is true
for thrust::merge, but the duplicate elimination adds a few additional steps. After all, a
bitonic sort and a prefix sum is needed for every partition instead of one comparison per
item in the sequential version. Also, 80 % of the time needed to execute the algorithm
on the CPU is needed to transfer input and results from/to the GPU, so point 3 is
barely fulfilled. Finally, we cannot efficiently overlap transfer and computation because
the complete dictionaries are needed for the partition step.

There is another major problem we have not mentioned yet: the Zip Merge does
not work with variable length strings. There are several problems, most notably we do
not know the amount of shared memory needed. It is limited and has to be allocated
for a kernel in advance. We cannot predict the memory needed for every partition
with variable length strings. Maybe it is not even possible to adapt this approach at
all. Certainly, the computation would require more inter-thread communication and
dynamic adjustment of partition sizes.

Hence, we can conclude that the GPU is not suited to handle the Dictionary Merge.
However, the merged algorithm is better than the two combined primitives from the
Thrust library. Additionally, the Zip Merge algorithm is a good showcase because there
is a clear difference between the SIMD parallelism needed for work distribution inside a
workgroup and the “independent” parallelism between workgroups.

4.4. Related Work

Application logic in HANA was already discussed in [39]. They integrated the R language
for statics as basis for machine learning algorithms. SQLScript provides the ability to
express procedural logic in general and is interpreted by HANA itself [9]. Another
approach to execute K-Means with the help of the DBMS was presented by Ordonez

62

4.4. Related Work

et al. in [81]. They implemented the whole algorithm in plain SQL with the help of
temporary tables.

Heimel and Markl also identified query optimization as a promising task to execute on
the GPU, because it is usually compute-bound and requires minimal data transfer. As
a proof-of-concept they integrated an GPU-assisted selectivity estimator for real-valued
range queries based on Kernel Density Estimation into PostgreSQL [45].

Krüger et al. showed that the GPU is better at merging than the CPU [61]. However,
on the CPU they chose to fully sort the dictionaries after concatenating and did an
additional step for eliminating duplicates instead of using Algorithm 2. Also, in the
second phase of the Delta Merge, when the new value IDs are created (see Section 2.2.4
and Section 3.4.3), they did not use a simple map, but looked up every value in the new
dictionary. Both decisions make the algorithm do much more computing than necessary
and create an advantage for the GPU.

63

5. Query Execution on GPUs—A Dynamic
Task

In the last chapter we have taken a look at static tasks in a DBMS that can be offloaded
to the GPU. Their common ground is that we can predict the benefit of offloading if we
know their input’s size and their parameters, e.g., the k for K-Means or the number of
predicates for the maximum entropy calculations. We discuss this scheduling decision
in detail in the next chapter. Still, to justify an expensive co-processor like a high-
performance GPU in a general DBMS, it should be able to execute at least parts of the
major workload: query execution.

In contrast to static tasks, query execution is nearly unpredictable in performance on
the GPU, because it is a combination of different primitives—relational operators in this
case—that are combined at run-time. The order and type of operators is different for
every query. Hence, we call query execution a dynamic task. Past research on using
GPUs [34, 46, 43, 42, 6, 54] and other co-processors [31, 97] for query execution treated
every operator as a static task independent of the other operators. We present parts of
this work in Section 5.6.

There are, however, problems with the approach of considering every operator on its
own:

• First, although especially OLAP queries can be quite compute-intensive, their ex-
ecution plans are often very large and most operators actually do not do much
work. The overhead for starting new kernels and synchronization becomes signifi-
cant and we cannot fully utilize all cores on the GPU. In Section 4.3 we have seen
that we gain performance if we combine primitives. This would be beneficial for
query execution as well.

• Second, we have to materialize every intermediate result for this approach and in
the worst case transfer it to main memory if it does not fit into the device memory.
Since the output of every operator is the input of the next one, we do not know
their parameters and input sizes in advance. Hence, we cannot decide if offloading
an operator is beneficial before we start the actual execution. Instead we have to
wait for every operator to finish and decide where to execute the next one.

To overcome these problems, we proposed to build custom query kernels to avoid ma-
terialization and overhead in [88].1 These kernels represent the query execution plan and
can be compiled to machine code at run-time. JIT-compilation was recently proposed as
a novel approach for query execution on the CPU as well. In Section 5.2 we explain the

1This chapter represents are more detailed description of our work in [88].

65

5. Query Execution on GPUs—A Dynamic Task

concept and why this approach is better suited for the GPU than the classic operator
approach. Dees et al [19] introduced a bulk-synchronous model that merges relational
operators in a way that most queries are transformed to not more than two function
calls. However, in their work they mainly focus on data representation, indexes and the
techniques used for execution of the (merged) operators. In Section 5.3 we go into the
details of the bulk-synchronous processing they use for execution on multi-core CPUs.

Because their model uses only one layer of parallelism, it cannot be applied to the GPU
in this form. By adding a second SIMD-stlye layer of parallelism—similar to what we
explained for the Dictionary Merge above—we can adapt this model for GPU execution
as we show in Section 5.4. We compare the performance of our prototype on GPU and
CPU with the implementation from [19] in Section 5.5.

Still, in general query execution is a data-intensive task. Even with a solution that
prevents back-and-forth-transfers of intermediate results, input and output of the whole
query must be transferred between CPU and GPU somehow. Therefore we take a look
at our options to cope with this problem in Section 5.1 before we start off.

5.1. In General: Using GPUs for data-intensive problems

The transfer to the GPU is the main bottleneck for data-centric workloads as we already
discussed earlier. Because of two characteristics, query execution is data-intensive and
not compute-intensive, making the transfer to the external co-processor an unsolvable
problem.

First, we cannot predict beforehand which values of a relation are really accessed
and have to transfer them all. If a selection evaluates a predicate on one column, the
values of the other column in this row are also filtered without ever been touched.
Universal Virtual Addressing (UVA) is NVIDIA’s solution to avoid unnecessary transfers
by streaming the required data at the moment it is needed on the GPU. The authors
of [52] propose UVA for join processing on the GPU, Yuan et al. also use it for query
execution in general [106]. But this approach is very limited because just like the “pinned
transfers” described in Section 3.4.3 UVA requires main memory to be pinned. As we
have shown, pinning memory is very expensive and only a limited amount of memory
can be pinned. Also, we have no way to force data to stay on the GPU, so this approach
might lead to repeating transfers of the same data segments if data is touched more than
once. Still, this might be a solution for some problems.

The second and much worse problem is that the transfer of a tuple is slower than pro-
cessing it once in typical query. Even if the GPU accesses the main memory sequentially
and we can use streaming we remain limited to the PCIe bandwidth of theoretically
8 GB/s (PCIe 2). Research has shown, that evaluation of predicates is much faster—up
to 25 GB/s per thread(!)—on the CPU [103]. Even if other operators are slower on the
CPU, the probability that queries with a low selectivity are faster on the GPU is low.
From our perspective there are three possibilities to cope with this problem:

1. The data is replicated to the GPU memory before query execution and cached
there.

66

5.2. JIT Compilation—a New Approach suited for the GPU

2. The data is stored exclusively in the GPU’s memory.

3. CPU and GPU share the same memory.

The first option limits the amount of data to the size of the device memory, which is
very small at the moment: high end graphic cards for general-purpose computations
have about 4–16 GB. Furthermore, updates have to be propagated to the GPU.

Storing the data exclusively in the GPU’s memory also limits the size of the database.
Furthermore, there are queries that should be executed on the CPU, because they require
advanced string operations or have a large result set (see Section 5.4.2). In this case we
face the transfer problem again, only this time we have to copy from GPU to CPU.

The third solution, i.e., CPU and GPU sharing the same memory, is not yet available
for high performance GPUs. Integrated GPUs in AMD’s Trinity architecture already
show a working solution for this feature, but both the CPU as well as the GPU are slow
compared to modern server processors and graphic cards. However, research has already
evaluated join operations on such architectures [54]. So, we are sure that the transfer
bottleneck for GPGPU applications will not be a problem for long anymore. But until
shared memory is available, replication is the best choice for our needs.

5.2. JIT Compilation—a New Approach suited for the GPU

Query execution in most RDBMS is done in two phases. In the first phase the DBMS
parses the query entered by the user and creates an execution plan consisting of operators
of a system-specific algebra. This plan is optimized during its creation—we explained
some details in Section 4.2—before it is actually executed in the second phase. For the
execution of this plan traditional RDBMS use the Volcano model [36]. Every operator
of the execution plan has an ONC interface. After an initial open, next is called on
the final operator to get the first record of the result. The operator then calls the next

function of the parent operator and so on until the whole result set is fetched record
by record. The model is flexible enough to allow the introduction of new operators,
e.g., different join-implementations and by calling the operator for each tuple it avoids
materialization of intermediate results. With this strategy the bottleneck of traditional
systems, I/O to disk, can be reduced to a minimum. With larger main memory buffer
pools in disk-based DBMS and MMDBMS, I/O is still dominating in some cases, but
not the general bottleneck anymore. Hence, the overhead induced by the tuple-at-a-
time-strategy is much too high for modern systems. The code has to be loaded by the
CPU every time one operator’s next method is called, the code locality of the strategy
is bad. Additionally, these methods are virtual, i.e., every call requires a lookup in the
virtual method table.

Consequently, MonetDB—as the pioneer column store DBMS—uses a column-at-a-
time approach, which calculates the whole result of each operator in one call. This
approach perfectly supports intra-operator-parallelism. Parallel execution of each op-
erator can be easily implemented by splitting the input of the operator, processing it
in parallel, and merging the results in the end. The disadvantage of this is that every

67

5. Query Execution on GPUs—A Dynamic Task

Figure 5.1.: Hand-written code is still faster than vectorwise [108]

operator runs until all data is processed and its results are materialized in main memory.
Therefore, every operator needs to load the intermediate results into the cache again.
Processor optimizations, such as branch prediction over operator bounds, are unusable.
Another problem is that the size of intermediate results is limited to the available main
memory. If it gets larger, the operating system starts to swap to disc.

To overcome this limitations and get the best of both approaches, the successors of
MonetDB, X100 and Vectorwise use configurable-size vectors of tuples as intermediate
results [108]. By choosing a size smaller than the available cache, materialization is very
fast, but the workload of every next-call is still large enough to support intra-operator-
parallelism. Also, the overhead for book-keeping and operator calls is dramatically mini-
mized compared to the tuple-at-a-time model. Vectorwise shows impressive performance
on OLAP scenarios with this vector-at-a-time processing [10].

Still, all of these approaches use the operators introduced by the Volcano model to
separate each phase of the query-plan execution. Hand-written C-Code still performs
significantly faster as we see in Figure 5.1, because there is no book-keeping and no
materialization. Neumann [72] proposes to leave the volcano-like operators and merge
them until synchronization is unavoidable. Logically, these operators are still used, but
they are not called as separate function anymore. Figure 5.2 shows an example for
this approach. He generates code for every query, compiles it just-in-time and uses
the compiler for low-level-optimization. Neumann already stated that new compiler
developments—like adjustments to modern CPUs—can directly be used with the help
of the JIT approach.

The Volcano model with operators as functions performs even worse on GPUs, because
kernel calls are much more expensive than virtual function calls. The column-at-a-time
model requires intermediate results to be transferred to the CPU’s memory because the
GPU’s memory might not be large enough to hold it. With the vector-at-a-time model
we would have to choose huge vector sizes to allow full utilization on the GPU. Every

68

5.3. A Model for Parallel Query Execution

Figure 5.2.: Example for Neumann’s merging of operators [72]

operator requires synchronization and result materialization. On the GPU, where the
latency to global memory is very high and size is even more limited than system memory,
this poses unacceptable problems.

The model we proposed in [88] is similar to the concepts of Neumann [72] and Krikellas
et al [60]. Both already mention parallelism as future work, but do not provide details
on this topic. In contrast to them, the authors of [19] focused on building code for
parallel execution on the CPU. In the next section we show that we can use a set of
patterns based on their work to build code that needs only one global synchronisation
point—perfectly suited for parallel execution on the CPU—and avoids materialization
of intermediate results. By adding a second parallelisation layer that works in a SIMD-
fashion, we extend this model to the GPU. In the end we can even conclude that the
extended model works well on both platforms even with the same code-basis.

5.3. A Model for Parallel Query Execution

In this section we describe a model for parallel execution of relational operators on
the CPU. This model targets a MIMD-architecture, where threads can execute different
instructions. One of the main challenges when designing parallel algorithms is to keep the
amount of communication between threads low, because communication requires threads
to by synchronized. Every time we synchronize threads to exchange data, some cores
are forced to wait for others to finish their work. One strategy to avoid synchronization
is to partition the work in equally-sized chunks and let every thread process one or more
chunks independently. In the end, the results of each thread are merged into one final
result. The less time is spent on partitioning, the more can be used to do the real work.
This approach is called bulk-synchronous model [101] and describes the first level of
parallelism we need to distribute work over independent threads.

Dees et al. [19] have shown that we can create code for most queries that fits into such
a concept. The query execution always starts with a certain table (defined by the join
order), which is split horizontally. The split is performed only logically and does not
imply real work. In the first phase of the query execution every partition of the table is
processed by one thread in a tight loop, i.e., selections, joins, and arithmetic terms are
executed for each tuple independently before the next tuple is processed. We call this

69

5. Query Execution on GPUs—A Dynamic Task

the Compute phase, since it is the major part of the work. Before we start the second
phase of the query execution, called Accumulate, all threads are synchronized once. The
Accumulate phase merges the intermediate results into one final result.

This model is similar to the MapReduce model, which is used to distribute work over a
heterogeneous cluster of machines [18]. However, our model does not have the limitations
of using key-value pairs. Additionally, the Accumulate phase does not necessarily reduce
the number of results, while in the MapReduce model the Reduce phase always groups
values by their keys. In case of a selection, for instance, the Accumulate phase just
concatenates the intermediate results.

The Accumulate phase depends on the type of query, which can be one of the following
patterns.

Single Result

The query produces just a single result line, e.g., a SQL query with a sum clause but no
group by, TPC-H query 6 for instance:

select sum(l_ext...*l_discout) from ...

This is the simplest case for parallelization: Each thread just holds one result record.
Two interim results can be easily combined to one new result by combining the records
according to the aggregation function.

(Shared) Index Hashing

On SQL queries with a group by clause where we can compute and guarantee a maxi-
mum cardinality that is not too large, we can use index hashing. This occurs for example
in TPC-H query 1:

select sum(...) from ... group by l_returnflag, l_linestatus

We store the attributes l returnflag and l linestatus in a dictionary-compressed
form. The size of each dictionary is equal to the number of distinct values of the attribute.
With this we can directly deduce an upper bound for the cardinality of the combina-
tion of both attributes. In our concrete example the cardinality of l returnflag is 2
and l linestatus has 3 distinct values for every scale factor of TPC-H. Therefore the
combined cardinality is 2 · 3 = 6. When this upper bound multiplied with the data size
of one record (which consists of several sums in query 1) is smaller than the cache size,
we can directly allocate a hash table that can hold the complete result. We use index
hashing for the hash table, i.e., we compute one distinct index for the combination of all
attributes that serves as a hash key. On the CPU, we differentiate whether the results
fit into the L3-(shared by all cores of one CPU) or the L2-(single core) cache. If only
the L3 cache is sufficient, we use a shared hash table for each CPU where entries are
synchronized with latches. We can avoid this synchronization when the results are small

70

5.4. Extending the Model for GPU Execution

enough to fit into L2 cache. In this case we use a separate hash table for each thread
while remaining cache efficient.

For combining two hash tables, we just combine all single entries at the same positions
in both hash tables, which is performed similar to the single result’s handling. There is
no difference in combining shared or non-shared hash tables.

Dynamic Hash Table

Sometimes we cannot deduce a reasonable upper bound for the maximum group by

cardinality or we can not compute a small hash index efficiently from the attributes.
This can happen if we do not have any estimation of the cardinality of one of the group

by attributes or the combination of all group by attributes just exceeds a reasonable
number. In this case we need a dynamic hash table that can grow over time and use a
general 64-bit hash key from all attributes. The following is an example query in which
it is difficult to give a good estimation for the group by cardinality:

select sum() ... from ... group by l_extendedprice,

n_nationkey, p_partsupp, c_custkey, s_suppkey

Combining two hash tables is performed by rehashing all elements from one table and
inserting it into the other table, i.e., combing the corresponding records.

Array

For simple select statements without a group by, we just need to fill an array with all
matching lines. The following SQL query is an example for this problem:

select p_name from parts where p_name like ’%green%’

5.4. Extending the Model for GPU Execution

In this section we explain what is necessary to use the Compute/Accumulate model for
query execution on GPUs. Since only one global synchronization point is needed, we
can execute each phase in one kernel. As we can see in Figure 5.3(a), the workgroups of
the Compute kernel work independently and write the intermediate results (1) to global
memory. This is similar to the threads executed on the CPU. The Accumulate kernel
works only with one workgroup. It writes the final result (3) to global memory (the
GPU’s RAM).

Until now, nothing has changed in the model. To differentiate it from the extended
model that we introduce in a moment, we call this the global Compute/Accumulate
process. It is a direct translation of the CPU implementation and shows that workgroups
on the GPU are comparable to threads on the CPU.

However, in contrast to CPU threads, every OpenCL workgroup is capable of using up
to 1024 Stream Processors for calculations. Threads running on those Stream Processors
do not run independently but in a SIMD fashion, i.e., at least 32 threads are executing

71

5. Query Execution on GPUs—A Dynamic Task

(a)

1 1 1

Compute

Accumulate

Global
Sync

2

(b)

33 3 3
3

3 3
Local

Compute

Local

Accumulate

Local

Sync

1 1 1

Accumulate

Global
Sync

2

Figure 5.3.: (a) Basic Model, (b) Extended Model
Legend: 1 – intermediate results, 2 – global result, 3 – private result

the same instruction at the same time. These threads form a so called warp—the warp
size may be different for future architectures. If there are branches in the code, all threads
of one warp step through all branches. Threads that are not used in a certain branch
execute No Operations (NOPs) as long as the other threads are calculating. The threads
of one warp are always in sync, but all threads of one workgroup must be synchronized
manually if necessary. Although this local synchronization is cheap compared to a global
synchronization, we have to be careful about using it. Every time it is called, typically
all workgroups execute it. Since we use up to 1,000 workgroups (see Section 5.5.4), the
costs for one synchronization also multiply.

Therefore we apply a local Compute/Accumulate model in the global Compute phase.
First, the local execution is adapted to the GPU’s memory hierarchy. Because the local
results are only accessed by the threads of one workgroup, there is no need to write
them to global memory. The whole process can be seen in Figure 5.3(b). Every (GPU-
)thread computes its result in private memory (3), usually the registers of each Stream
Processor. At the end of the local Compute phase, the results are written to local
memory, the threads are synchronized, and the local Accumulate phase is started.

Second, in contrast to the independent workgroups of the global model, the local
processes work in a SIMD fashion and therefore differ from the global phase in the
detail. Since we do mostly the same with every tuple we can do this in parallel on a
batch of tuples at a time in a SIMD-fashion. The size of the batch equals the number
of threads per workgroup. Instead of splitting the partitions in contiguous chunks like
in the global model, we stripe them. The thread ID equals the position of the tuple in
the batch, i.e., the first thread of the workgroup works on the first tuple, the second on
the second, and so on. This works much better than horizontally partitioning the table,
because we enforce coalesced memory access. The worst case for this SIMD approach
arises if a few tuples of the batch require a lot of work and the rest is filtered out early.
As we explained above this leads to a lot of cores executing NOPs, while only a few are
doing real work. If all tuples of the batch are filtered—or at least all tuples processed
by one warp—the GPU can skip the rest of the execution for this batch and proceed to
the next. Fortunately this is often the case in typical OLAP scenarios data, e.g., data
of a certain time frame is queried and is stored in the same part of the table.

The aggregation specified by the query is in parts already done in the local Compute
phase, where each thread works on private memory. In the local/global Accumulate

72

5.4. Extending the Model for GPU Execution

Table 5.1.: SIMD operations required by pattern

Query result pattern SIMD Operation Sort

Single Result sum bitonic
Index Hashing (group
by)

sum bitonic

Array prefix sum & copy merge

phase we merge these private/intermediate results. The threads are writing simultane-
ously to local memory, so we require special algorithms that work in a SIMD fashion and
avoids memory conflicts. The algorithms (prefix sum, sum, merge, and bitonic sort) are
well known and can be found in the example directory that is delivered with NVidia’s
OpenCL implementation. Therefore we just name them at this point and give a short
overview but not a detailed description.

The easiest case is no aggregation at all, where we just copy private results to local
memory and later to global memory. However, since all threads copy their result in
parallel, the right address has to be determined to guarantee that the global result has
no gaps. Therefore, each thread counts the number of its private results and writes
the size to local memory. To find the right offset for each threads starting position we
calculate the prefix sum in local memory. This is done by pairwise adding elements
in logn steps for n being the number of threads. In the end every position holds the
number of private results of all threads with smaller IDs and therefore the position in
the global result.

We use a very similar approach for the sum-Aggregation. In case of a single result
pattern (see Section 5.3) we calculate the sum of the private results in parallel by again
using pairwise adding of elements in local memory. For index hashing (see Section 5.3)
this has to be done for each row of the result. The second column of Table 5.1 shows
the SIMD operation belonging to the results pattern.

Sorting is the final process of the Accumulate phase. In every case we can use bitonic
sort. In case of the array pattern it is also possible to pre-sort the intermediate results
in the Compute phase and use a simple pair-wise merge in the Accumulate phase.

5.4.1. Concrete Example

Figure 5.1 shows the OpenCL code for the Compute kernel of query 4 (Q4):

select o_orderpriority, count(*) from orders

where o_orderdate >= ’1993-07-01’

and o_orderdate < ’1993-10-01’

and exists (select * from lineitem

where l_orderkey = o_orderkey

and l_commitdate < l_receiptdate)

group by o_orderpriority

order by o_orderpriority

73

5. Query Execution on GPUs—A Dynamic Task

Parameters for the kernel are pointers to the columns in global memory, a pointer to
the result memory and the size of the block that is processed by each thread. The query
parameters, such as the date and the number of expected results, are compiled into the
code at run-time. We use WG_SIZE as abbreviation for get_local_size(0), which is the
number of threads per workgroup. Before starting the local Compute phase private (per
thread) and local (per workgroup) memory segments are initialized and every thread
calculates its starting position.

The actual Compute phase is represented as a for-loop. Inside the loop the tuples
are filtered according to the where clause, which is a date range in Q4. The inner loop
after the filter instructions represents the join operation between lineitem and orders. In
this loop we iterate over the join index and filter tuples according to the inner select’s
where clause. As soon as one tuple is found, the private counter for this orderpriority
is incremented and the rest of the inner loop is skipped. At the end of the Compute
phase every thread of a workgroup holds the result for the tuples it processed in private
memory.

In the local Accumulate phase these results are added to the interim result of every
workgroup. A sum function as described in Section 5.4 is executed on every line of the
result to sum up the counted tuples of the Compute phase.

Listing 5.1: Compute kernel of Q4

1 __kernel void global_compute (

2 __global unsigned short* p_c1 ,

3 ... // columns/indexes as parameters

4 __global long* interim_result ,

5 int bs//num of tuples processed by 1 thread

6) {

7 __local long l_thread_data[RESULT_SIZE];

8 long p_thread_data[RESULT_SIZE];

9 ... //init memory with 0

10 uint start = (get_group_id (0) * WG_SIZE * bs)

11 + get_local_id (0);

12 uint end = start + WG_SIZE * bs;

13 /* local compute */

14 for (unsigned i0=start; i0 <end; i0+= WG_SIZE)) {

15 unsigned short c1 = p_c1[i0];

16 if (!(c1 >= 8582)) continue;

17 if (!(c1 < 8674)) continue;

18 unsigned c0 = p_c0[i0];

19 unsigned ind1e = ind1[i0 + 1];

20 for (unsigned i1=ind1[i0]; i1 <ind1e; ++i1) {

21 if (!(p_c2[i1] < p_c3[i1])) continue;

22 ++ p_thread_data[c0];

23 break;

24 }

25 }

26 /* local accumulate */

74

5.4. Extending the Model for GPU Execution

27 for (int j=0; j < RESULT_SIZE; ++j) {

28 local_sum (& l_thread_data[j],p_thread_data[j]);

29 }

30 ... //copy l_thread_data to interim_result

31 }

5.4.2. Limitations of the GPU Execution

In this section we discuss the limits of our framework. We categorize these in two classes:

Hard limits Due to the nature of our model and the GPU’s architecture there are limits
that cannot be exceeded with our approach. One of these limits is given by OpenCL: we
cannot allocate memory inside kernels, so we have to allocate memory for (intermediate)
results in advance. Therefore we have to know the maximum result size and since it is
possible that one thread’s private result is as big as the final result, we have to allocate
this maximum size for every thread. One solution to this problem would be to allocate
the maximum result size only once and let every thread write to the next free slot. This
method would require a lot of synchronization and/or atomic operations, which is exactly
what we want to avoid. With our approach we are limited to a small result size that
is known or can be computed in advance, e.g., top-k queries or queries that use group

by on keys that have a relatively small cardinality. The concrete number of results we
can compute depends on the temporary memory that is needed for the computation, the
hardware, and the data types used in the result, but it is in the order of several hundred
rows.

Soft limits Some use cases are known not to fit to the GPU’s architecture. It is possible
to handle scenarios of this type on the GPU, but it is unlikely that we can benefit from
doing that. The soft limits of our implementation are very common for general-purpose
calculations on the GPU. First, the GPU is very bad at handling strings or other variable
length data types. They simply do not fit into the processing model and usually require
a lot of memory. An indication for this problem is, that even after a decade of research
on general-purpose computing on graphics processing units and commercial interest in
it, there is no string library available for the GPU, not even simple methods such as
strstr() for string comparison. In most cases we can avoid handling them on the GPU
by using dictionary encoding. Second, the size of the input data must exceed a certain
minimum to use the full parallelism of the GPU (see Section 5.5.4).

Furthermore, GPUs cannot synchronize simultaneously running workgroups. There-
fore we cannot efficiently use algorithms accessing shared data structures, such as the
shared index hashing and the dynamic hash table approach described in Section 5.4.

75

5. Query Execution on GPUs—A Dynamic Task

5.5. Evaluation

In this section we present the performance results of our framework, which have in parts
already been shown in [88]. Each query consists of two functions that are compiled at
run-time when the query is executed. On the CPU TBB is used to execute the functions
in parallel, the function code itself is compile with LLVM. On the GPU every query
requires two kernels, OpenCL is used for parallelization as well as for JIT compilation.

5.5.1. Details on Data Structures

Our data structures are kept very simple and optimized for columnar main memory
access. The basic data structure is an array for each column where all values are stored
consecutively. We use only basic data compression, the number of bytes used for numeric
values is the smallest integral C++ type that can hold all the values of the array, i.e.,
either 1, 2, 4 or 8 bytes. For variable-length strings we only store a pointer directing
to the underlying character array. However, we seldom store strings directly in a single
array, but use dictionary encoding for string columns instead, because handling strings—
especially with SIMD instructions and on the GPU—cannot be done efficiently. These
dictionaries hold all distinct values in sorted order. This is advantageous as ordering
properties remain valid for the integers encoding the values in the dictionary. With this,
sorting or range lookups can be directly performed on the integers. Having a dictionary
for a certain column, we also know the number of distinct values. In case of group by-
queries, we can often use this knowledge to allocate the correct (maximum) amount of
memory for the result. We also keep a minimum of statistical information: For numeric
columns we keep track of the minimum and maximum value residing in that column.
This is useful to perform efficient and correct casting for calculations, e.g., in a sum

clause.

Another important part of our data structures are join indices. We generate join
indices for all foreign key declarations in both directions. Instead of traditional B-tree
indices we use position-based join indices. Therefore we implemented several variants
depending on join cardinality. For example, columns referencing a column of another
table via a foreign key are guaranteed to have exactly one matching row. Here our join
index consists of a simple array holding single row numbers referencing the target table.
For columns where each row references several rows of the joined table, we store a list of
referenced row numbers. The list is stored by holding a begin and end offset pointing to
a data array with the row numbers. While these join indices may cause a lot of random
accesses for certain relations even if we sort the numbers within each list, the simple
access patterns usually pay off. In effect, these simple access patterns make it possible
to use indices on the GPU in the first place.

5.5.2. Test System and Test Data

To evaluate our implementation we run several different TPC-H queries on the scale
factor 10 dataset (10 GB data). We compare the performance of NVidia’s Tesla C2050

76

5.5. Evaluation

to a HP Z600 workstation with two Intel Xeon X5650 CPUs. Details about the hard-
ware, such as GFLOPs, are listed in Appendix A.1. However, floating point operations
are rarely needed in query execution and to the best of our knowledge there are no
comparisons on the performance of integer operations for our devices. All tests were
conducted on Ubuntu 12.04 LTS. The framework was compiled with gcc 4.5 and TBB
3.0 Update 8. The JIT compilation was done by LLVM 2.9 for the CPU and the OpenCL
implementation that is shipped with CUDA 5.0 for the GPU.

We performed our experiments on seven different TPC-H queries. We ran all of those
queries on the CPU as well as on the GPU, i.e., all of those queries are suitable for GPU
execution. Therefore, we can either use the Single Result (Q6) or the index hashing (all
other queries) pattern as described in Section 5.4. By selecting queries with different
characteristics we tried maximizing the coverage for different query types. For example,
the queries vary in the size of the result structure, in the number of tables involved or
in the kind of operator patterns.

5.5.3. GPU and CPU Performance

Since the native CPU implementation described in Section 5.3 was already compared to
other DBMS [19], we take it as our baseline and compare it to our OpenCL implemen-
tation.

In our first experiment we compare the implementations by measuring the raw execu-
tion time of each query. As explained in Section 5.1 the necessary columns for execution
are in memory, we do not consider the compile times, and we include result memory
allocation (CPU and GPU) and result transfer (only needed on the GPU). We configure
the OpenCL framework to use 300 workgroups with 512 threads each on the GPU and
1000 workgroups with 512 threads on the CPU. This configuration gives good results for
all queries as we show in Section 5.5.4.

Figure 5.4 compares the execution times for seven TPC-H queries on different plat-
forms: Z600 is the native CPU implementation on the Z600 machine, Tesla/CL the
OpenCL implementation on the Tesla GPU and Z600/CL the OpenCL implementation
executed on the CPU of the workstation. As we can see, the OpenCL implementation for
the GPU is considerably faster than the native implementation on the workstation for
most queries. The only exception is Q1, for which the GPU takes almost twice as long.
The OpenCL implementation of Q1 on the CPU is significantly worse than the native
implementation as well. The reason for this is hard to find, since we cannot measure time
within the OpenCL kernel. The performance results might be worse because in contrast
to the other queries the execution of Q1 is dominated by aggregating the results in the
local accumulate phase. This indicates that the CPU works better for queries without
joins but with aggregations. Further tests and micro-benchmarks are needed to proof
this hypothesis.

It is remarkable that the OpenCL implementation on the CPU achieves almost the
same performance as the native CPU implementation for half of the queries, considering
that we spent no effort in optimizing it for the actual architecture.

77

5. Query Execution on GPUs—A Dynamic Task

1 4 5 6 7 12 14

0

50

100

150

200

Query

E
x
ec

u
ti

on
T

im
e

in
m

s

Z600

Tesla/CL

Z600/CL

1 4 5 6 7 12 14

0

5

10

Query

T
im

e
in

%
of

ex
ec

u
ti

on
ti

m
e

Figure 5.4.: Absolute execution times
Figure 5.5.: Transfer time for final re-

sults in comparison to ex-
ecution time

5.5.4. Number of Workgroups and Threads

We illustrate in Figure 5.6 how the number of workgroups used for the execution of
the query influences the performance. We measure two different configurations: the left
figure shows the results when we use 512 threads per workgroup; on the right we use
256 threads per workgroup. Due to implementation details our framework is not able
to execute queries 1 and 5 for less than around 140 resp. 200 workgroups. For the other
queries we can clearly see in both figures that we need at least around 50,000 threads
in total to achieve the best performance. This high number gives the task scheduler on
the GPU the ability to execute instructions on all cores (448 on the Tesla C2050) while
some threads are waiting for memory access. There is no noticeable overhead if more
threads are started with the following exceptions:

Query 4 shows irregular behavior. It is the fastest query in our set, the total execution
time is between 1 and 2 ms. Therefore uneven data distribution has a high impact.

Query 5 is getting slower with more threads, because the table chunks are too small
and therefore the work done by a thread is not enough. The table, which is distributed
over the workgroups, has only 1.5 mio rows, i.e., each thread processes only 3 rows in
case of 1,000 workgroups with 512 threads each. This matter is even worse with Query
7, because the table we split has only 100,000 rows. The other queries process tables
which have at least 15 mio rows.

This experiment shows that the GPU works well with a very high number of threads
as long as there is enough work to distribute. In our experiments, one thread should
process at least a dozen rows.

The behavior is similar to task scheduling on the CPU, where task creation does
not induce significant overhead—in contrast to thread creation. Figure 5.7 shows the
execution time of the native implementation depending on the grain sizes, which is the
TBB term for the size of the partition and therefore controls the number of tasks. As we

78

5.6. Related Work

0 200 400 600 800 1,000

10−3

10−2

10−1
Q1

Q4

Q5

Q6

Q12

Q14

Q7

Number of Workgroups (512 Threads)

ex
ec
u
ti
o
n
ti
m
e
in

se
co
n
d
s

0 200 400 600 800 1,000

10−3

10−2

10−1
Q1

Q4

Q5

Q6

Q12

Q14

Q7

Number of Workgroups (256 Threads)

Figure 5.6.: Comparison of different workgroup numbers (left: 512, right: 256 threads
per workgroup)

can see, a large grain size prevents the task scheduler from using more than one thread
and therefore slows down execution. The optimal grain size for all queries is around
1000. We achieve a speed-up of 7 up to 15 for this grain size. If the partitions are
smaller, the execution time increases again. Similar to our OpenCL implementation the
optimal number of tasks per core is around 100.

5.5.5. The Overhead for Using the GPU

Although the data to be processed is already accessible by the GPU, we have some
overhead for calling the kernels, allocating the memory, and transferring the result back
to main memory in the end. Depending on the amount of memory that needs to be
allocated and transferred, this takes between 0.2 and 1.0 ms. In Figure 5.5 we show the
impact on the execution time. Especially for the short-running queries 4, 6 and 14 the
time needed is noticeable. Although we need only two kernel calls and transfer not more
than a few kilobytes for the result, the overhead makes almost 10 percent.

This shows that it is very important to communicate between CPU and GPU as rarely
as possible. If we called each operator in an Open-Next-Close-fashion or had to reserve
memory for materialized results of each operator, the overhead would take more time
than the actual query execution.

5.6. Related Work

Over the last decade there has been a significant amount of research on using GPUs
for query execution. He et al. built GDB, which is able to offload the execution of
single operators to the GPU [42]. They implemented a set of primitives to execute joins
efficiently. The main problem is that the data has to be transferred to the GPU, but
only a small amount of work is done before copying the results back to the main memory.
Peter Bakkum and Kevin Skadron ported SQLite to the GPU [6]. The complete database
is stored on the graphics card and only the results are transferred. Since all operations

79

5. Query Execution on GPUs—A Dynamic Task

20 24 28 212 216 220 224 228

10−2

10−1

100

Grain Size

E
x
ec
u
ti
on

ti
m
e
in

se
co
n
d
s

Q1 Q4
Q5 Q6
Q7 Q12
Q14

Figure 5.7.: Comparison of different grain sizes

are executed on the GPU, their system is not able to use variable length strings. It
can process simple filter operations, but does neither support joins nor aggregations.
Another approach with the focus on transactional processing has been tried in [44].
Their implementation is able to execute a set of stored procedures on the data in the
GPU’s memory and handles read and write access.

A very good summary about published database operators such as selection, joins
and aggregations on external GPUs is given by the authors of [46]. Until now only
one publication about an operator on an integrated CPU/GPU architecture is available:
in [54] the authors propose a stream join for the GPU which makes use of the shared
memory provided by AMD’s Trinity architecture. Since it is not necessary to transfer
data anymore, the HELLS-join is depending only on the processing power and on the
bandwidth between the processing unit and the memory. The evaluation shows that
Trinity’s GPU allows faster stream join processing than it’s CPU.

The most promising approach to execute analytical queries on heterogeneous hardware
has been proposed by Heimel et al [46]. They re-implemented all relational operators
available in MonetDB with OpenCL and showed that this delivers the same performance
on the CPU as MonetDB’s native multi-core-CPU approach. The benefit is of course
that OpenCL can be executed on other supported processor architectures. The approach
targets heterogeneous processors, such as AMD’s APUs, but can also execute operators
on an external co-processor. To hide the transfer they cache columns on the GPU. Their
results show—similar to ours—that a modern GPU can be faster than the CPU in many
cases if you ignore the time needed to copy the data to the external memory. However,
there are also queries that run faster on the CPU.

The authors of [106] create OpenCL and CUDA code for OLAP queries of the Star
Schema Benchmark (SSB) [78]. Their paper is written under the assumption that

80

5.7. Conclusion

the GPU is better at query execution than the CPU (Yin), but transfer is necessary
(Yan). Consequently they integrated the PCIe transfer into their model and showed
some promising ways to use streaming for star schema queries. Their evaluation shows
that every query runs faster on their framework than in MonetDB—even with transfer.
From our point of view this is an unfair comparison. While their framework is able to
handle only SSB queries, Monet DB is a full-fledged DBMS that can execute any type
of query and adheres to the ACID rules. They tuned their implementation manually,
e.g., with the help of invisible Joins, but left MonetDB in its original state. As for our
work a comparison with the implementation of Dees et al. [19] or Neumann [72] would
be more appropriate. Nevertheless, their streaming approach may in many cases be a
good alternative for data replication as we used it and becomes even more interesting
with heterogeneous platforms.

Compiling a complete query plan (or parts of it) into executable code is a radical
and novel approach. Classical database systems generate executable code fragments for
single operators, which can be used and combined to perform a SQL query. There are
several recent approaches for generating machine code for a complete SQL query. The
prototype system HIQUE [60] generates C code that is just-in-time-compiled with gcc,
linked as shared library, and then executed. The compile times are noticeable (around
seconds) and the measured execution time compared to traditional execution varies:
TPC-H queries 1 and 3 are faster, query 10 is slower. Note that the data layout is not
optimized for the generated C code. HyPer [56, 72] also generates code for incoming
SQL queries. However, instead of using C, they directly generate LLVM IR code (similar
to Java byte code), which is further translated to executable code by an LLVM compiler
[99]. Using this light-weight compiler they achieve low compile times in the range of
several milliseconds. Execution times for the measured TPC-H queries are also fast,
still, they use only a single thread for execution.

One of the fundamental models for parallel query execution is the exchange operator
proposed by Graefe [35]. This operator model allows both intra-operator parallelism
on partitioned datasets as well as horizontal and vertical inter-operator parallelism.
Although this model can also be applied to vectorized processing strategies it still relies
on iterator-based execution. Thus, the required synchronization between each operator
can induce a noticeable overhead.

5.7. Conclusion

In this chapter we showed how we can compare the performance of query execution on
the GPU with the one on the CPU in a fair manner. In other works we often see two
extremes: Either the presented GPU implementation is compared to the performance of
a full fledged DBMS that provides much more functionality and adheres to the ACID-
rules or the GPU implementation is modified so it can be used on the CPU as well.

In contrast to that we tried to provide a fair comparison by using a hand-tailored
solution for the CPU and one for the GPU that both use a comparable model for
execution. We are confident that the tested queries cannot be executed faster than

81

5. Query Execution on GPUs—A Dynamic Task

that on the used hardware.
The results show that some queries can indeed be executed faster on the GPU than

on the CPU and that OpenCL can be used to parallelize algorithms on the CPU.

82

6. Automatically Choosing the Processing
Unit

In the previous chapters we have shown that some tasks in a DBMS can be offloaded to
a co-processor with benefit. In many cases however, the CPU is faster than the GPU for
certain input sizes or parameters. Therefore, we need a framework that offloads tasks
automatically only if this is beneficial. Such a framework—called HyPE—was developed
as a joint work of researchers from Otto-von-Guericke University Magdeburg and TU
Ilmenau in [12].1

In Section 6.1 we motivate, why automatic scheduling of operators is necessary. The
concept of operators as we use it, is explained in Section 6.2. In Section 6.3 we present the
decision model for offloading operators to a co-processor. HyPE is the implementation
of this model. We evaluate it with the help of two use cases in Section 6.4. We take a
look at related work in Section 6.5 and conclude this chapter in Section 6.6.

6.1. Motivation

In the previous chapters we showed that a DBMS can benefit from a co-processor such
as the GPU but not all calculations should be offloaded there. Unfortunately the CPU’s
and GPU’s architectures are much too different, to safely predict if a task runs faster
on the CPU or on the co-processor—although there are indicators and rules of thumb.
For some tasks, such as the dictionary merge algorithm presented in Section 4.3, there
is no benefit in using the GPU at all. In this case the transfer is the dominant factor,
but there are also tasks that are not parallelizable in an efficient manner.

In many cases, however, there is a range of input sizes, where it makes sense to
execute the task on the GPU (see Sections 3.4.4, 4.2.2, 4.1.2). We call this range GPU-
benefit range as shown in Figure 6.1. If, on one hand, the amount of input data is to
small, the GPU cannot be fully utilized. On the other hand a large input might not fit
into the GPU’s memory and cannot be processed without swapping. The GPU-benefit
range strongly depends on the CPU and GPU in the system; there are three common
configurations:

Desktop configuration In desktop systems we often find powerful gaming graphic cards
combined with a standard desktop CPU, which has two or four cores. In such a system
the GPU-benefit range is wide, as long as single precision calculations are sufficient.

1The implementation can be found here: http://wwwiti.cs.uni-magdeburg.de/iti_db/research/

gpu/hype/

83

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/hype/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/hype/

6. Automatically Choosing the Processing Unit

GPU-benefit
range

Memory Ca-
pacity on GPU

Input Size

E
x
ec

u
ti

o
n

T
im

e

CPU
GPU

Figure 6.1.: The GPU-benefit range

Server configuration Server CPUs are typically more powerful than their desktop pen-
dants and have four to eight cores. In Table 6.1 a common combination of processor and
graphics card for desktop and server machines is shown.2 The Xeon processor is able
to execute twice the number of operations within the same time than the desktop pro-
cessor. High-end desktop CPUs have a similar performance like server CPUs. However,
workstation or server machines usually have multiple CPUs that are interconnected with
a fast network.

Server class GPUs on the other hand do not provide significantly more single pre-
cision performance. The K20 for instance is only 10% more powerful than the GTX
770. Instead, vendors like NVIDIA focus on adding performance for double precision
calculations: the server GPU processes nine times as many floating point operations as
the desktop GPU.

In combination this means that on server machines there are less tasks that can be
executed faster with the GPU than with the CPU: the GPU-benefit range is tighter than
on a desktop machine.

Heterogeneous architecture At the time of writing there are CPUs available that have
an integrated GPU, namely Intel’s Haswell architecture and AMD’s APUs, but they are
mainly sold in mobile and energy-efficient desktop PCs. There is a high probability
that we will see these heterogeneous architectures in future server CPUs as well. These
heterogeneous processors share the main memory—and even some parts of the cache
hierarchy—between all processing units [14]. Hence, the transfer bottleneck vanishes.

2The listed calculation power in Floating Point Operations per Second (FLOPS) is a theoretical value
and should only be used as an indicator. Vendors use different ways of determining the calculation
power. It makes no sense to compare the CPU numbers with the GPU numbers, but comparing the
devices of one vendor is feasible.

84

6.2. Operator Model

Calculation Power in GFLOPS CPU GPU (SP/DP)

Desktop: i5-3450, GeForce GTX 770 99.2 3213/134

Server: Xeon E5-4650, K20 172.8 3520/1173

Table 6.1.: Comparison of typical desktop and server configurations. Numbers from
hardware specifications [49, 76].

However, this huge advantage brings two disadvantages: First, because they share the
same memory, they both use the same memory technology. External GPUs are equipped
with GDDR-memory that has a wider bandwidth (around 200 GB/s [76]) and a higher
latency. The latency can be hidden by using a high number of threads (see Section 5.5.4).
Integrated GPUs do use the standard system memory instead, where the bandwidth is
significantly lower. Second, integrated GPUs share the same die with the CPU. Hence,
they are limited in space and have to use one cooling system together with the CPU, so
they are much less powerful than the ones on external cards.

The GPU-benefit range show in Figure 6.1 looks different for heterogeneous architec-
tures because there is no upper limit depending on the GPU’s memory capacity. Still,
there must be enough data to distribute over all GPU cores, i.e., for small input sizes
the CPU is faster.

Many systems belong to one of these three categories, but there are of course also
mixtures such as desktop systems with high end CPUs or with both, an integrated and
an external GPU. Because of this variety it is not feasible to decide in advance which
processing unit to use for a task with a certain input size. Calibrating a machine once
is not practical as well because there might be thousands of tasks and for some the
GPU-benefit range also depends on parameters other than the input size, e.g., for K-
Means the range strongly depends on k (see Section 4.1.2). Hence, a self-tuning approach
that decides automatically where to execute certain tasks based on prior knowledge is
necessary.

6.2. Operator Model

6.2.1. Base Model

For the framework we concentrate on static tasks—like the ones shown in Chapter 4—
that can either be executed by the CPU or a co-processor such as a GPU. These tasks,
which we refer to as operators in the following, are the base granularity for a schedul-
ing decision. Using the framework for query plans generated just in time is limited.
Predicting the execution time of a query that is executed in two phases as described
in Chapter 5 is nearly impossible, because the influence of certain parts of the query is
unknown when they are not modeled in independent operators. However, the scheduling
framework can be used if the DBMS has to answer only a limited set of queries—similar
to the parametrized queries of the TPC-H set. In this case we treat every possible query

85

6. Automatically Choosing the Processing Unit

with its two kernels as one operator.

I C O

output data
transfer

input data
transfer computation

I C O
operatori operatori+1

I C O
operatori ∪ i+1

Figure 6.2.: Operator model [12]

An operator consists of three phases: the input data access/transfer, the actual com-
putation time, and the result/output transfer. The output of one operator can be the
input for another one as depicted in Figure 6.2. For accessing the input data and storing
results, a certain amount of time is required, e.g., I/O time for fetching data from disk,
or transferring data from/to an attached co-processor device. These times can easily be
measured in current systems or calculated, e.g., when the bus bandwidth and transfer
rates of the underlying hardware are known. For actually solving the task, computation
time is consumed by the involved processor. This time depends on

1. the algorithm itself

2. the hardware used

3. the size of the input data

4. the characteristics of the input data to be processed, e.g., the selectivity of a
complex filter

5. the parameters for the operator, e.g., a value range for a filter condition or more
complex parameters, such as the k for the K-Means algorithm

These dependencies are usually first known at run-time and may change. Hence, the
computation time is harder to estimate than transfer times. Further, the computation
time includes hidden data access times like main memory or cache accesses. Those
internal times are hard to measure when the algorithm is executed and usually require
sophisticated profiling tools that utilize dedicated system-specific hardware counters.

We regard operators as primitives where the computation phase is an atomic part
that starts right after the input data is available. This perfectly matches the kernel
model used by OpenCL and CUDA as described in Section 3.3 where input data needs
to be transferred to the device before a parallel kernel starts processing, and its output
has to be transferred back to the host if it cannot be reused by another kernel. This
model is common in literature, e.g., [42]. Of course there are also more complex access
patterns, which overlap data accesses with computation, e.g., the 4-way-concurrency

86

6.2. Operator Model

pattern described in Section 3.4.3. Further, several algorithms cannot be expressed
with a single atomic computation phase. For instance, within a hash join operator, the
probe phase needs to wait until all keys have been inserted into a hashtable. In such
cases, the operator could be split further into dependent primitives. In general, this
could be done and a scheduling decision could be made for each resulting primitive,
but in most cases this approach is counterproductive. First, it complicates the decision
because many possible execution plans are generated. Second, splitting such operators
that are tightly coupled will hardly result in any improvement with separate processing
decisions. Most likely, data transfer costs will negate any performance improvements
or even lead to slowdowns. For our model we merge the primitives belonging to one
operator as depicted in Figure 6.2. The framework makes a single scheduling decision
and all internal data transfers are hidden in the computation phase.

6.2.2. Restrictions

There are restrictions to the scheduling decision: for the execution time estimation we
neither consider system load nor do we analyze input data to gain knowledge about
its characteristics. We explain the reasons and impacts of our framework design in the
following.

System Load

Although the load of the processing unit may be important for the scheduling decision,
it unfeasible to take it into account because of:

• Model Complexity: There are numerous resources that are affected by a running
task, e.g., memory bandwidth and capacity, caches, processing capacity.3 Modeling
the influence of different tasks on each other is, however, very complex. Moving
a data-intensive task to the GPU for instance seems to be a good idea, when the
CPU is working on another data-intensive task. Unfortunately the data transfer
to the GPU also requires bandwidth from the memory bus and would also slow
down the CPU execution. If both tasks accessed the same data, they may even
benefit from running together on the CPU because the cache hierarchy can be
utilized. Also, just marking a task as data-intensive or compute-intensive may be
an over-simplification.

• Measuring Complexity: For some parts of the system it is not possible to measure
the free resources easily. Determining the available memory bandwidth can only
be done by trying or using a central instance to give away resources. A central
instance of course only controls its own tasks. Resources used by other processes
are left out. Even if the resource usage can be measured, it is only a picture for
the moment. The system might look totally different as soon as the scheduling

3Tasks requiring network or disk I/O are usually not suitable for a co-processor, because I/O can in
general only be handled by the CPU.

87

6. Automatically Choosing the Processing Unit

decision has been made, for instance because a memory consuming OLAP query
just finished.

• Resource Control: Controlling resources for one task is very limited. In case of
CPU load the only possibility is to limit the number of threads to be used. For the
GPU not even this is possible. Another problem is that many tasks use libraries
that work as an abstraction layer such as Intel’s TBB, which partly controls re-
source usage itself. Here the number of TBB-tasks does not say anything about
the number of threads on the machine being used, because TBB also decides on
scheduling tasks on processing units. Hence, the only way to save control the load
would be to either execute a task or wait.

Data Characteristics

Execution times and result sizes often depend on the input data characteristics such
as cardinality, clusters, or (partly) sorted blocks. However, tasks depend on certain
characteristics only. Hence, there is no general assumption we can make about execution
times for every task. One possibility to include this factor into the scheduling decision is
to analyse the data and provide the result as parameter for the operator. The influence
of the parameter is then learned by our framework.

6.3. Decision Model

In Section 6.1 we discussed that a framework is needed to decide at run-time which
processing unit to use. The framework treats the underlying system hardware as black
box and uses machine learning techniques to make a decision based on the conditions for
the specific execution. Only little setup is required once to adjust the framework to the
hardware. As soon as this initial calibration is done it learns the executions times for
every task and makes decisions based on the collected data. In this section we describe
this framework, which was first presented in [13].

6.3.1. Problem Definition

Before the framework decides on the processing unit p the total execution time T ptotal
of an operator a, which solves a problem of class A (e.g., hash join and merge join
both solve the join problem), is estimated. T ptotal is the sum of in/output transfer time
(T pi /T po) and the actual computation time (T pc). We assume that there exist (unknown)
functions tpi , t

p
c , and tpo, which depend on different parameters and describe the system

behavior for that specific processing unit:

88

6.3. Decision Model

Calibrate Hardware

Train Operators

Conpute
Estimations

Select
Algorithm/Device

Execute
Operator

Add
Measurement

Training Phase
Execution Phase

Figure 6.3.: Workload for training and execution phase

T ptotal = T pi + T pc + T po where (6.1)

T pi = tpi (inputsize,HW, load
::::

) (6.2)

T pc = tpc(inputsize, a,HW,P
:
, load
::::

) (6.3)

T po = tpo(outputsize
::::::::::

, A,HW,P
:
, load
::::

) (6.4)

As explained in Section 6.2.2 we ignore the
:::::::::
dynamic system load. The influences

of the data size parameters, as well as the system hardware HW are considered to
be static assuming that the hardware does not change during run-time. The abstract
(multi-dimensional) parameter P describes any number of other dynamic parameters
like selectivity or cardinality that influence execution and output transfer time. Because
we consider the output of every operator a ∈ A to be the same, i.e., all algorithms
produce the same solution, the output transfer time depends on the class and not on
the specific operator. Therefore, the output size can be estimated in advance. Only the
computation time depends on the specific operator a.

Since the actual functions tp are unknown to the framework, they have to be modeled.
This can be achieved with various techniques, e.g., using analytical models, which are
rather static, or learning based approaches that require an expensive learning phase (cf.
Section 6.5). We use statistical methods that create an initial model with a short training
phase and, during run-time, improve it with actual execution times for a specific input
parameter set.

6.3.2. Training and Execution Phase

The operators’ execution models are divided into two phases as shown in Figure 6.3.
Before the framework can be used a training phase is needed as initial calibration. First,
the static hardware-specific behavior for data transfers needs to be approximated when
the system is set up or the hardware configuration changed. Although the theoretical

89

6. Automatically Choosing the Processing Unit

!"!!# !"!# !"# # #! #!! #!!!

#

#!

#!!

#!!!

!"#

#

#!

#!!

#!!!

#!!!!

!"#$%$"%&'()*'%&+$+%,-+.#/'-

$%&'(%)(#!!!(*+%,-.

/012.)30(/453(.'2,

/012.)30(/453(1.'2,

/012.)30(01/3(.'2,

/012.)30(01/3(1.'2,

01"*2%#)3'%4567

$-
+
.
#
/'
-%
$)
8
'
%4
8
#
7

$-
+
.
#
/'
-%
-+
$'
%4
9
6
:#
7

Figure 6.4.: GPU data transfers [12]

The maximal rate we achieved was ≈5.7 GB/s. For block sizes smaller than 10 kB/s
the transfer time is dominated by the overhead to execute the copy operation, i.e.,
1000 synchronous transfers always take 10 ms no matter the size of each transfer. For
synchronous transfers a block size of 0.7 MB is sufficient for fully utilizing the PCIe bus.
Because asynchronous transfers use pinned memory and are executed in parallel, which
hides the over for calling the GPU driver’s copy interface to a certain degree, a smaller
block size of around 70 kB is sufficient.

The second step of the training phase is the creation of the initial computation time
models for the available algorithms. These models can either be built when the system
is set up or at run-time, when operators need to be scheduled. In the latter case no
reasonable decision can be made at first; hence the algorithms are just scheduled in a

90

bandwidth of PCIe 2.0 bus is 8 GB/s, the real bandwidth differs depending on the GPU
and the mainboard. Therefore, in a short calibration operation, we copy data blocks
with varying sizes to the GPU. By scheduling multiple asynchronous copy transactions
we ensure that the available bandwidth is fully utilized. In case asynchronous transfers
are not available, e.g., because the memory segments are not pinned (cf. Section 3.4),
synchronous transfers are similarly calibrated. For GPU data transfers, we copied data
blocks with varying sizes from the host’s RAM to the device memory. Since concurrent
asynchronous copy operations are supported by modern GPUs, we executed 1000 copy
transactions for fully utilizing the available bandwidth. Additionally, synchronous copies,
which are serialized by the GPU driver, were scheduled to obtain transfer times that are
required for small, single blocks. The bandwidth utilization for a workstation equipped
with a Nvidia Tesla C1060 is shown in Figure 6.4.

6.3. Decision Model

round robin fashion. The run-time of every operator is measured. Together with the
calculated transfer times and the used parameters, these measures form interpolation
points that are used to approximate functions describing the computation behavior.

Figure 6.5.: Decision model overview (modified version from [13])

The execution phase starts, when all initial training steps are done. From this point
on scheduling decisions are based on the execution times learned in the training phase
(Figure 6.5). The processor with minimal expected costs (Test(ai, D)) is chosen and real
execution times (Treal(ai, D)) are measured. The measurements are then used to update
the model in case Test(ai, D) for the given data set parameters D differs too much from
the actual measure Treal(ai, D) similar to [107]. The (D, Treal)-measure pair (MP) is
used to update the model accordingly. Details on that can be found in [13].

To limit the amount of memory needed to store measure pairs ring buffers are used to
overwrite old measurements. This way the time needed to calculate the approximation
functions is also kept low. Using ring buffers causes very low overheads but may lead to
worse approximations compared to other aging mechanisms that evaluate the significance
for each MP and evict the least important one.

6.3.3. Model Deployment

Developing operators used by the decision model is orthogonal to the calibration and
execution described in Section 6.3.2. No prior knowledge about the hardware is required
to develop operators.

In general, the following steps are required to deploy the framework:

1. Identify operators: Similar to the tasks described in Chapter 4 operators have
to be identified that are suitable for co-processing. It makes sense to first find
hot-spots or bottlenecks during system execution, e.g., with the help of profiling
tools, and check if using a co-processor may be promising. In case of the GPU
and similar co-processors the points given in Section 3.5.1 can be used as rules of
thumb. Then, the task has to be mapped to the operator model introduced in
Section 6.2.

2. Operator implementation: the algorithm(s) solving the task have to be im-
plemented and tuned for each kind of processing unit that shall be supported.
OpenCL can be used for a universal implementation that is supported by the CPU

91

6. Automatically Choosing the Processing Unit

and potential co-processors. In some cases it may be useful to use frameworks
optimized for the given hardware, such as TBB for CPUs or CUDA for NVIDIA
GPUs.

3. Identify scheduling measure: Until now we described how the scheduling
framework can be used to optimize for response time. In some cases it might
be useful to make decision base on another criterion such as throughput. The
framework can easily be adapted.

4. Identify parameters: Next to the input size there might be other parameters
that influence the scheduling decision. If these parameters are not given, they need
to be estimated, e.g., k in k-means is given, the selectivity for a join operator needs
to be estimated.

6.4. Evaluation

In this section we show that the framework makes accurate decision, i.e., the predicted
execution times do not differ too much from the real/measured times. Furthermore,
we show that the benefit for using the right processing unit outweighs the overhead for
using the framework, i.e., calculating approximation functions and actually making the
decision.

6.4.1. Use Cases for Co-Processing in DBMS

To evaluate the framework we use two task that we describe in the following: sorting of
data and index scans.

Data Sorting

We use data sorting as first use case for two reasons: First, the problem of sorting ele-
ments in an array has been widely studied and a variety of implementations is available,
e.g., with the help of GPUs by Govindaraju et al [33]. Second, sorting is an important
primitive for database operations such as sort-merge joins or grouping. It is also part
of finding a good compression strategy as described in Section 2.2.3. Furthermore, it is
a multi-dimensional problem when using the number of elements to be sorted and the
number of CPU cores as parameters during scheduling.

We use the TBB sort implementation for the CPU and Thrust sort for the GPU.
Figure 6.6 shows the speed-up of the GPU over the CPU implementation. As expected
depending on the number of available cores on the CPU and the size of the array,
sometimes the GPU and sometimes the CPU is faster. We plotted contour lines in the
xy-plane that show when a certain speedup value is exceeded for a better orientation.
Especially the regions where the speedup is smaller than 1, i.e., the CPU is faster than
the GPU are interesting, because our framework should decide for the CPU in this case.
In general the CPU is faster when less than 200 000 elements have to be sorted. The
more cores are available the higher this value gets. With more than 12 threads, the CPU

92

6.4. Evaluation

Figure 6.6.: Sorting workload

is still faster at 1 000 000 elements. However, when using many threads the execution
time is very unstable, because we depend on the OS to assign resources to our process.
In contrast, all cores of the GPU are assigned to the running kernel. Hence, there is
almost no variance in the run-time of the kernel for one input size. Also, TBB may use
non-optimal partition sizes, which has a high impact on the execution time in case of
a small number of elements. We observed similar behavior in the other experiments of
this thesis (cf. Section 4.2.3).

Index Scan

Searching is—next to sorting—another very important primitive often used in DBMS-
operations. To speed up search operations, indexes are commonly used on large data
sets. Several variants exist for various use cases, e.g., B-trees for searching in one-
dimensional datasets where an order is defined, or R-trees to index multi-dimensional
data like geometric models. The GiST framework was developed to encapsulate opera-
tions on indexes like inserting or removing keys and provides operations for maintaining
the tree such as height-balancing [47]. To implement a new index type, only the actual
key values and key operations, such as query predicates, have to be defined by the devel-
oper. To define an n-dimensional R-tree for instance only minimal bounding rectangles

93

6. Automatically Choosing the Processing Unit

Q
ue

ry
 Q

ue
ue

Q
ue

ry
 Q

ue
ue

root
child nodes

c11
child nodes

c1m
child nodes

c211
child nodes

c21m
child nodes

c2m1
child nodes

c2mm
child nodes

...

Layer

0

1

2

...

Q
ue

ry
 Q

ue
ue

Q
ue

ry
 Q

ue
ue

Q
ue

ry
 Q

ue
ue

Q
ue

ry
 Q

ue
ue

Q
ue

ry
 Q

ue
ue

Figure 6.7.: Index tree scan [12]

with n coordinates and an intersection predicate are required. Beier et al. implemented
a framework that abstracts the hardware layer and enables look-up operations on the
GPU and on the CPU at the same time [7].

The necessary parallelism to benefit from such an approach is achieved by grouping
incoming operations and lookup several queries at once. This way two layers of paral-
lelism are created. Every node to be scanned is assigned to one of the CPU’s cores or
one of the GPU’s SMX. On the GPU the query predicates of the batch are then tested
against the node’s child nodes in parallel on each thread processor.

For optimal scan performance, it is required to determine which node has to be scanned
by which (co-)processor. The decision has to be made for every iteration and every node
and depends on two parameters. The first one is the node size, i.e., the number of one
node’s children (slots). It is determined once when the index is created and will not
change at run-time. Large nodes result in many tests per node but less index levels
to be scanned while small nodes reduce the required scan time per node but result in
deeper trees. The second parameter is the number of queries per scan task, which of
course changes with every batch. It depends on the application’s workload and the layer
where a node resides. The batches start at the root node and are streamed through the
tree until they are filtered or reach the leaf layer, returning final results. Hence, the
root node and other nodes nearby are tested for almost every query and the number of
queries per batch is expected to be large. Near the leaf layer more queries are already
filtered out, the parameter is usually smaller here.

The parameters’ impact on scan performance is illustrated in Figure 6.8 where the
GPU speedup s = CPU time

GPU time is plotted for different parameter combinations. For small
node and batch sizes, the GPU’s cores cannot be fully utilized and is up to 2.5 times
slower (= 1

s) than its CPU counterpart. The break even points where CPU and GPU

94

6.4. Evaluation

Figure 6.8.: Index scan—GPU speedup [12]

have the same run-time (s = 1) are depicted with the dotted line.

6.4.2. Implementation and Test Setup

The decision model described in the previous section was implemented in the HyPE
framework. Its estimation component uses statistical methods provided by the AL-
GLIB [4] package. For one-dimensional parameters the least squares method and spline
interpolation provide good estimations while requiring reasonable time for calculations.
If more than one parameter influences the execution time of an operator HyPE uses
multi-parameter fitting.

We choose the index scan as use case for single-parameter estimations: the number of
queries per batch. The number of slots per node is constant, because it is chosen in the
beginning, when the index is created and not modified at run-time. The input data for
the R-tree is artificially generated so that each node has 96 disjoint child keys. On the
GPU 128 scan tasks are scheduled at once as described in [7]. The machine used for the
experiment is equipped with an Intel Xeon CPU operating at 2.3 GHz and an NVIDIA
Tesla C1060 GPU. 4

The sort workload is used to test our model for mutli-parameter estimations. The first
parameter is the number of 32-bit integers contained in the array to be sorted and the
second parameter the number of threads that are available on the CPU for processing.
We assume that the GPU is always free for processing and can use all its cores. The
machine used for this experiment is a Z600 workstation with two Intel Xeon E5-2630
with 6 cores each and the Tesla C2050. 5 Data transfer times are included in all of the
measurements.

4See Appendix A.1 for Details on Hardware.
5See Appendix A.1 for Details on Hardware.

95

6. Automatically Choosing the Processing Unit

Figure 6.9.: 50 training operations

Figure 6.10.: Relative sorting estimation errors, training length: 300 operations

6.4.3. Model Validation

In this section we evaluate the scheduling decisions of the HyPE framework. First, we
executed a training phase for the use case with input data generated from the entire pa-
rameter space. The framework creates a global execution model for the trained problem
class. Second, we compare the scheduling decision made by HyPE based on estimated
run-times with the real run-time.

With an increasing number of parameter dimensions it becomes unfeasible to train
the framework with all parameter combinations. For the sort workload, we choose 50
parameter combinations randomly from the generated workload. Figure 6.9 shows the
relative estimations errors for the whole parameter space. The relative estimation error
denotes the average absolute difference between each estimation value and its corre-
sponding measure in the real workload. After this initial training phase, we added 250
additional samples. The new relative estimation errors are plotted in Figure 6.10.

96

6.4. Evaluation

 1

 10

 100

 1000

 1 10 100
ex

ec
ut

io
n

tim
e

in
 m

s

batch size

CPU scan
GPU scan
model decision

Figure 6.11.: Scheduling decisions for the index workload

As expected the largest errors occur in the area of many CPU cores and small data
sizes. We already discussed that the execution times for this case are very unstable.
Hence, a good prediction based on the given parameters is impossible. For most pa-
rameter combinations the estimation errors are ≈ 0, which confirms that our model can
effectively handle multiple parameters. The model becomes more accurate at run-time,
when samples are added by executing the sort operation. In consequence scheduling
decision for frequently executed operations are more accurate than for operation that
are rarely executed.

The execution times for the index scan operation on CPU and GPU are illustrated in
Figure 6.11. Because we used only one parameter, there is only one break-even point.
After a short training phase, the relative estimation error for CPU scans is less than 9%
and—since for this experiment again the GPU scan’s run-time is more stable than the
CPU’s—the estimation error for the GPU scan is even smaller at around 4%. The shaded
area shows the run-time of the respective model decision after the training. Together
the HyPE and the GiST framework make sure that the application that uses the index
gets the best performance without any knowledge about the underlying hardware.

6.4.4. Model Improvement

We showed that the run-time estimations of the HyPE framework are accurate and that
in most cases the right algorithm is chosen. In this section we evaluate if we can benefit
from hybrid processing in case of a typical workload. To quantify the performance gain
we define a measure, the model improvement [12] as:

model improvement(DMi → DMj ,W) =
TDMi(W)− TDMj (W)

TDMi(W)
(6.5)

The model improvement for a specific workload W is a ratio that shows the impact on
the run-time T of a decision model DMi compared to another model DMj . A positive
value means that DMj allows the workload to be completed in a shorter run-time than
DMi, i.e., we benefit from using DMj . Hence, not the sole number of wrong decisions is
crucial for the model improvement but the decision’s impact. Wrong scheduling decisions
near the break-even-point(s) are uncritical for most users.

97

6. Automatically Choosing the Processing Unit

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

0%

20%

40%

60%

80%

100%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

96 Slots, 25% Correlation, 10000 Root Queries, 512 MaxBatchSize

CPU Only

GPU Only

Real

Ideal

Ideal vs CPU

Ideal vs GPU

Ideal vs Real

Real vs CPU

Real vs GPU

Selectivity

R
e

la
ti

v
e

 R
u

n
ti

m
e

R
u

n
ti

m
e

 I
m

p
ro

v
e
m

e
n

t

Figure 6.12.: Model improvement for the index scan depending on selectivity

We define DMideal as the hypothetical model that always chooses the fastest algorithm
and processing unit. It is an upper bound that cannot be achieved in practice because
there is always overhead for making the decision and adapting the learned model. The
goal is to get as close as possible to DMideal. A hybrid approach is beneficial when the
model improvement is positive compared to the trivial models that always choose the
same algorithm for the same processing unit. Otherwise, the overhead for learning and
adapting parameters cancels out any performance gain.

To evaluate the model improvement of HyPE in combination with the GiST framework
we create an R-Tree with equally structured nodes and non-overlapping keys. It has 5
levels and 96 slots, leading to a total number of 8 billion indexed entries. For every
query workload we use predicates with a different selectivity. The higher the selectivity
the more queries are sent to the child nodes, i.e., a higher selectivity means more queries
per batch. Figure 6.12 shows the normalized total run-times for each decision model
illustrated as bars. The differences between the run-times are depicted as curves. For
selectivities below 20% the model that always chooses the CPU is almost ideal, because
all batches except for the root-node queries are small. When the selectivity increases
to over 40% batch sizes are large enough so that always choosing the GPU is the ideal
model. If the selectivity is between 20% and 40% neither of the trivial models are
ideal. HyPE however is close to the ideal model (within 5% including the overhead
for adapting the model) in every case. Compared to the trivial models we achieve a
significant performance improvement.

6.5. Related Work

Analytical Cost Models While we estimate execution times based on records of pre-
vious runs, there are other possibilities as well. Manegold et al. presented a framework
that creates cost functions of database operations with the help of their memory access
patterns. The cost functions are used to estimate the execution time of an operator [66].

98

6.6. Conclusions

Together with the query operators He et al. present a cost model that can be used to
predict the run time of a query on the GPU in [42]. However, both models are limited to
operators used in query execution, while we focus on a more general model. Kothapalli
et al. propose to analyse CUDA kernel to predict the performance of any kernel [59].

Learning based Execution Time Estimation Similar to our approach, others also de-
veloped learning models, but used them in another context. For example, Zhang et al.
used a learning model to predict the costs of XML queries. Akdere et al. proposed the
Predictive DBMS in which the optimizer trains and selects models transparent to the
user [3]. The basic idea of their approach is to perform a feature extraction on queries
and compute execution time estimations based on them. Instead of predicting the exe-
cution time Matsunaga et al. presented an approach to estimate the resource usage for
an application [68].

Decision Models Kerr et al. also worked on the possibility to automatically decide
whether to use the GPU or not. Instead of a learning based approach they analyzed
CUDA kernels and recorded a high number of metrics. These metrics are then used to
decide on any given kernel written in CUDA. This choice is made statically in contrast to
our work and introduces no run-time overhead but cannot adapt. Iverson et al. developed
an approach that estimates execution times of tasks in the context of distributed systems
[50]. The approach, similar to our model, does not require hardware-specific information,
but differs in focus and statistical methods from ours.

6.6. Conclusions

In this chapter we presented a framework that schedules tasks to available process-
ing units by using knowledge from previous executions. Our approach uses spline-
interpolation to create a cost function for each operation and processing unit. Therefore,
no detailed knowledge about the CPU or the co-processor is necessary, both are treated as
black boxes. Every execution refines the cost function, and it can easily be re-calibrated
in case the hardware changes. The evaluation results show that our approach achieves
near optimal decisions and quickly adapts to workloads.

99

7. Conclusion

The first thing we learned while doing research on GPUs in DBMS was that although we
can execute almost any task with the help of OpenCL or CUDA, they are not necessarily
faster on the GPU. On the one hand, we have the transfer bottleneck. No matter, what
technologies (UVA) or approaches (caching) we use, we always have to copy data to the
device memory. On the other hand, not every algorithm can be fitted to the programming
model used by the GPU. In general more work has to be done in parallel algorithms.
Depending on the complexity of the partition and merge operations this overhead might
outweigh the benefit of having more calculation power. Sometimes the overhead grows
with the number of cores we want to use. Then the parallel algorithm scales well on a
multi-core CPU, but fails on the GPU, where 100 times more threads are necessary.

Nevertheless, we could show that there are tasks within a DBMS that can benefit from
the raw calculation power of the GPU. First, there is application logic; machine learning
algorithms such as K-Means are known to run faster on the GPU. We showed that we
can have the advantages of executing it in the DBMS as UDF and on the GPU at the
same time. Second, query optimization depends on selectivity estimations, which have
to be calculated with the help of linear algebra. GPU vendors provide libraries factors
faster than comparable functions on the CPU. By using these libraries we can use more
complex operations, so query execution can benefit from more accurate estimations.
Third, although the GPU is not necessarily better at executing OLAP queries, there are
queries where we are factor ten faster as long as the data fits into the GPU’s memory.
Using the GPU for stored procedures that are executed regularly can free resources on
the CPU for other jobs and provide results faster.

It is unlikely that the system can estimate a task’s run-time accurately by just ana-
lyzing the code, because the execution time strongly depends on data and query char-
acteristics. These are hard to measure and quantify. Estimations for static tasks based
on earlier executions, however, are a good basis for decisions. When implementations
for the CPU and a co-processor are available, e.g., with the help of OpenCL, the system
is able to choose the best processing unit and algorithm without user-interaction. The
overhead for using a framework that provides this is minimal as we have shown in the
previous chapter.

The GPU provides so much calculation power, because most of the transistors on it
are actually used to process instructions. The downside of this approach is that the
code has to be optimized to use the GPU in the right way. Therefore, unoptimized
code has a heavy impact on the performance of the GPU. In contrast CPUs provide
hardware to optimize the execution of the instructions, which compensates for such code.
Writing good code requires constant training and knowledge about the architecture. So
instead of programming for the GPU directly, most developers should use libraries for

101

7. Conclusion

execution, even if this requires to transform the actual problem to be solved by the
given functionality. In most cases the performance loss because of transformations will
be smaller than the loss because of poorly written code.

Former Co-processors, like the FPU or processors for cryptography are integrated
into the CPU nowadays. To use these special function units, CPU vendors provide
special instruction sets, which are automatically used by compilers. Hence, application
developers usually do not have to care about where tasks are executed. While we also
see clear signs that the GPU will be integrated into a heterogeneous processing platform
as well, it is unlikely that we can use them transparently. Of course there will be special
instructions for graphics processing, but in contrast to the FPU for instance, the GPU
is able to solve problems from other domains as well. So, if performance is a priority,
developers have to decide for each and every task, where to execute it. This problem will
even be more challenging than today. There is no transfer bottleneck on heterogeneous
platforms, but CPU and GPU share resources. Using the GPU might slow down the
CPU, because the memory bus is used or because the temperature on the chip is too
high for both to run at full power. Therefore, it is even more important to consider
the right architecture for a problem. First, the algorithm itself has to be analyzed. On
the one hand our dictionary merge example from Section 4.3 can be solved efficiently
with one thread. The more threads we use, the more overhead is necessary. K-Means
on the other hand requires a high number of distances to be calculated, which can be
done independently and in parallel without much overhead. Second, if the algorithm fits
to the parallel architecture of the GPU the input data has to be checked at run-time
whether it allows the problem to be distributed over many cores or not. Only then it
makes sense to use the GPU.

102

Bibliography

[1] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. Integrating compression
and execution in column-oriented database systems. In Proc. of ACM SIGMOD
Conference, page 671. ACM Press, June 2006.

[2] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-Stores vs. Row-
Stores: How Different Are They Really? In Proc. of ACM SIGMOD Conference,
page 967, New York, New York, USA, 2008. ACM Press.

[3] Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley Zdonik.
The Case for Predictive Database Systems: Opportunities and Challenges. In
Proc. of CIDR Conference, 2011.

[4] ALGLIB Project. Homepage of ALGLIB. http://www.alglib.net/.

[5] Peter A. Alsberg. Space and time savings through large data base compression
and dynamic restructuring. IEEE, 63:1114–1122, 1975.

[6] Peter Bakkum and Kevin Skadron. Accelerating SQL database operations on a
GPU with CUDA. In GPGPU Workshop, page 94, New York, New York, USA,
2010. ACM Press.

[7] Felix Beier, Torsten Kilias, and Kai-Uwe Sattler. GiST scan acceleration using
coprocessors. In Proc. of DaMoN Workshop, pages 63–69, New York, New York,
USA, May 2012. ACM Press.

[8] Manfred Bertuch, Hartmut Gieselmann, Andrea Trinkwalder, and Christof
Windeck. Supercomputer zu Hause. c’t Magazin, 7, 2009.

[9] Carsten Binnig, Norman May, and Tobias Mindnich. SQLScript: Efficiently Ana-
lyzing Big Enterprise Data in SAP HANA. BTW, 2013.

[10] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In Proc. of CIDR Conference, volume 5, 2005.

[11] Hanan Boral and David J. DeWitt. Database machines: An idea whose time has
passed? a critique of the future of database machines. Technical report, 1983.

[12] Sebastian Breß, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike Schallehn, and
Gunter Saake. Efficient Co-Processor Utilization in Database Query Processing.
Information Systems, 2013.

103

http://www.alglib.net/

BIBLIOGRAPHY

[13] Sebastian Breß, Siba Mohammad, and Eike Schallehn. Self-Tuning Distribution of
DB-Operations on Hybrid CPU/GPU Platforms. Grundlagen von Datenbanken,
2012.

[14] Nathan Brookwood. Whitepaper: AMD Fusion Family of APUs: Enabling a
Superior, Immersive PC Experience, 2010.

[15] Donald D. Chamberlin. A Complete Guide to DB2 Universal Database. Morgan
Kaufmann, 1998.

[16] George P. Copeland and Setrag N. Khoshafian. A decomposition storage model.
In ACM SIGMOD Record, volume 14, pages 268–279. ACM, 1985.

[17] Mayank Daga, Ashwin Aji, and Wu-Chun Feng. On the Efficacy of a Fused
CPU+GPU Processor (or APU) for Parallel Computing. In SAAHPC, pages 141–
149. IEEE, July 2011.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce. Communications of the ACM,
51(1):107, January 2008.

[19] Jonathan Dees and Peter Sanders. Efficient Many-Core Query Execution in Main
Memory Column-Stores. In Proc. of ICDE Conference, 2013.

[20] Cristian Diaconu, Craig Freedman, Erik Ismert, and Per-Ake Larson. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Proc. of VLDB Conference,
2013.

[21] Franz Färber, Sang Kyun Cha, Jürgen Primsch, and Christof Bornhövd. SAP
HANA database: data management for modern business applications. In Proc. of
ACM SIGMOD Conference, 2012.

[22] Franz Färber, Norman May, Wolfgang Lehner, Philipp Groß e, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[23] Rob Farber. CUDA, Supercomputing for the Masses: Part 21. Dr. Dobb’s Journal
, November 2010.

[24] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, September 1972.

[25] Free Software Foundation. The GNU C++ Library - Online Dokumentation. http:
//gcc.gnu.org/onlinedocs/libstdc++/index.html.

[26] Hector Garcia-Molina and Kahne Salem. Main memory database systems: an
overview. IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516,
1992.

104

http://gcc.gnu.org/onlinedocs/libstdc++/index.html
http://gcc.gnu.org/onlinedocs/libstdc++/index.html

BIBLIOGRAPHY

[27] Bura Gedik, Rajesh R. Bordawekar, and Philip S. Yu. CellSort: high performance
sorting on the cell processor. pages 1286–1297, September 2007.

[28] Bura Gedik, Rajesh R. Bordawekar, and Philip S. Yu. CellJoin: a parallel stream
join operator for the cell processor. The VLDB Journal, 18(2):501–519, September
2008.

[29] Bura Gedik, Philip S. Yu, and Rajesh R. Bordawekar. Executing stream joins on
the cell processor. pages 363–374, September 2007.

[30] Jongmin Gim and Youjip Won. Extract and infer quickly: Obtaining sector geom-
etry of modern hard disk drives. ACM Transactions on Storage, 6(2):1–26, July
2010.

[31] Brian Gold, Anastasia Ailamaki, Larry Huston, and Babak Falsafi. Accelerating
database operators using a network processor. Proc. of DaMoN Workshop, page 1,
2005.

[32] Solomon W. Golomb. Run-length encodings. IEEE Trans Info Theory 12(3), 1966.

[33] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTeraSort.
In Proc. of ACM SIGMOD Conference, page 325, New York, New York, USA, June
2006. ACM Press.

[34] Naga Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
Fast computation of database operations using graphics processors. In Proc. of
ACM SIGMOD Conference, pages 215–226. ACM, 2004.

[35] Goetz Graefe. Encapsulation of parallelism in the Volcano query processing system.
In Proc. of ACM SIGMOD Conference, volume 19, pages 102–111, New York, New
York, USA, May 1990. ACM Press.

[36] Goetz Graefe. Volcano—An Extensible and Parallel Query Evaluation System.
IEEE Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994.

[37] Chris Gregg and Kim Hazelwood. Where is the data? Why you cannot debate CPU
vs. GPU performance without the answer. In IEEE International Symposium on
Performance Analysis of Systems and Software, pages 134–144. IEEE, April 2011.

[38] P. Griffiths Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. Access path selection in a relational database man-
agement system. In Proc. of ACM SIGMOD Conference, page 23, New York, New
York, USA, May 1979. ACM Press.

[39] Philipp Groß e, Wolfgang Lehner, Thomas Weichert, Franz Färber, and Wen-
Syan Li. Bridging two worlds with RICE—Integrating R into the SAP In-Memory
Computing Engine. Proc. of VLDB Conference, 4(12), 2011.

105

BIBLIOGRAPHY

[40] Silviu Guiasu and Abe Shenitzer. The principle of maximum entropy. The Math-
ematical Intelligencer, 7(1):42–48, March 1985.

[41] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287–317, December 1983.

[42] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga Govindaraju, Qiong Luo, and
Pedro V. Sander. Relational query coprocessing on graphics processors. ACM
Transactions on Database Systems, 34(4):1–39, December 2009.

[43] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro V. Sander. Relational joins on graphics processors. Proc. of ACM SIGMOD
Conference, page 511, 2008.

[44] Bingsheng He and Jeffrey Xu Yu. High-Throughput Transaction Executions on
Graphics Processors. In Proc. of VLDB Conference, volume 4, pages 314–325,
March 2011.

[45] Max Heimel and Volker Markl. A first step towards gpu-assisted query optimiza-
tion. In Proc. of ADMS workshop, 2012.

[46] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
Hardware-oblivious parallelism for in-memory column-stores. In Proc. of VLDB
Conference, volume 6, pages 709–720. VLDB Endowment, July 2013.

[47] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized Search
Trees for Database Systems. In Proc. of VLDB Conference, pages 562–573. Morgan
Kaufmann Publishers Inc., September 1995.

[48] Wen-mei W. Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann
Publishers Inc., October 2011.

[49] Intel. Intel microprocessor export compliance metrics. http://www.intel.com/

support/processors/sb/CS-017346.htm.

[50] Michael A. Iverson, Fusun Ozguner, and Gregory J. Follen. Run-Time Statistical
Estimation of Task Execution Times for Heterogeneous Distributed Computing.
In Proc. of HPDC Symposium, page 263. IEEE Computer Society, August 1996.

[51] Jens Steube. Homepage of oclHashcat. http://hashcat.net/oclhashcat/.

[52] Tim Kaldewey, Guy M. Lohman, Rene Mueller, and Peter Volk. GPU Join Pro-
cessing Revisited. Proc. of DaMoN Workshop, 2012.

[53] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A Performance Comparison
of CUDA and OpenCL. page 12, May 2010.

[54] Tomas Karnagel, Dirk Habich, Benjamin Schlegel, and Wolfgang Lehner. The
HELLS-join. In Proc. of DaMoN Workshop, page 1, New York, New York, USA,
June 2013. ACM Press.

106

http://www.intel.com/support/processors/sb/CS-017346.htm
http://www.intel.com/support/processors/sb/CS-017346.htm
http://hashcat.net/oclhashcat/

BIBLIOGRAPHY

[55] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter Michael Fis-
cher, Donald Kossmann, Franz Färber, and Norman May. Timeline index. In Proc.
of ACM SIGMOD Conference, page 1173, New York, New York, USA, June 2013.
ACM Press.

[56] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In Proc. of ICDE
Conference, pages 195–206. IEEE, April 2011.

[57] Laszlo B. Kish. End of Moore’s law: Thermal (noise) death of integration in micro
and nano electronics. Physics Letter A, 305:144–149, 2002.

[58] Veit Köppen, Gunter Saake, and Kai-Uwe Sattler. Data Warehouse Technologien.
mitp-Verlag, 2012.

[59] Kishore Kothapalli, Rishabh Mukherjee, Suhail Rehman, Suryakant Patidar, Pun-
jab J. Narayanan, and Kannan Srinathan. A performance prediction model for the
CUDA GPGPU platform. In High Performance Computing Conference (HiPC),
pages 463–472. Ieee, 2009.

[60] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. Generating code
for holistic query evaluation. In Proc. of ICDE Conference, pages 613–624. IEEE,
March 2010.

[61] Jens Krueger, Martin Grund, Ingo Jaeckel, Alexander Zeier, and Hasso Plattner.
Applicability of GPU Computing for Efficient Merge in In-Memory Databases. In
Proc. of ADMS Workshop, 2011.

[62] Victor W. Lee, Per Hammarlund, Ronak Singhal, Pradeep Dubey, Changkyu Kim,
Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur
Satish, Mikhail Smelyanskiy, and Srinivas Chennupaty. Debunking the 100X GPU
vs. CPU myth. In Proc. of ISCA, page 451, New York, New York, USA, 2010.
ACM Press.

[63] Christian Lemke, Kai-Uwe Sattler, and Franz Färber. Compression Techniques for
Column-Oriented BI Accelerator Solutions. In BTW, 2009.

[64] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon 5500 processors. Technical report, 2009.

[65] James B. Macqueen. Some Methods for classification and analysis of multivariate
observations. 1:281 – 297, 1967.

[66] Stefan Manegold, Peter Boncz, and Martin L. Kersten. Generic database cost
models for hierarchical memory systems. In Proc. of VLDB Conference, pages
191–202. VLDB Endowment, August 2002.

107

BIBLIOGRAPHY

[67] Volker Markl, Peter J. Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Srivastava,
and Tam M. Tran. Consistent selectivity estimation via maximum entropy. The
VLDB Journal, 16(1):55–76, September 2006.

[68] Andréa Matsunaga and José A.B. Fortes. On the Use of Machine Learning to
Predict the Time and Resources Consumed by Applications. In Proc. of CCGRID
Conference, pages 495–504. IEEE, May 2010.

[69] Gordon E. Moore. Cramming More Components Onto Integrated Circuits. Elec-
tronics, pages 114–117, January 1965.

[70] Rene Mueller and Jens Teubner. FPGAs: A New Point in the Database Design
Space. In Proc. of EDBT Conference, page 721. ACM Press, March 2010.

[71] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs, GPUs and Intel MIC
Architectures.

[72] Thomas Neumann. Efficiently compiling efficient query plans for modern hardware.
In Proc. of VLDB Conference, volume 4, pages 539–550, 2011.

[73] NVIDIA. CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/pdf/

CUDA_C_Best_Practices_Guide.pdf.

[74] NVIDIA. Homepage of the CUDA SDK Documentation. http://docs.nvidia.

com/cuda/index.html.

[75] NVIDIA. Homepage of Thrust. https://developer.nvidia.com/Thrust.

[76] NVIDIA. NVIDIA Tesla Kepler Datasheet. http://www.nvidia.com/content/

tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf.

[77] NVIDIA. Whitepaper: NVIDIAs Next Generation CUDATMCompute Architec-
ture: Kepler GK110. Technical report, 2012.

[78] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Benchmark, 5 June
2009.

[79] OpenACC. Homepage of OpenACC. http://www.openacc-standard.org/.

[80] Oracle. Whitepaper: Extreme Performance Using Oracle TimesTen In-Memory
Database. Technical report, 2009.

[81] Carlos Ordonez. Programming the K-means clustering algorithm in SQL. In Proc.
of ACM SIGKDD, page 823, New York, New York, USA, August 2004. ACM
Press.

[82] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of GeneralPurpose Compu-
tation on Graphics Hardware. Computer Graphics Forum, 26:80–113, 2007.

108

http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/Thrust
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.openacc-standard.org/

BIBLIOGRAPHY

[83] Hasso Plattner and Alexander Zeier. In-Memory Data Management: An Inflection
Point for Enterprise Applications. 2011.

[84] Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without the
Attribute Value Independence Assumption. In Proc. of VLDB Conference, pages
486–495. Morgan Kaufmann Publishers Inc., August 1997.

[85] Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ailamaki. Task
Scheduling for Highly Concurrent Analytical and Transactional Main-Memory
Workloads. In Proc. of ADMS Workshop, 2013.

[86] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. DB2 with BLU ac-
celeration: so much more than just a column store. In Proc. of VLDB Conference,
volume 6, pages 1080–1091. VLDB Endowment, August 2013.

[87] Cornelius Ratsch. Adaptive String Dictionary Compression in In-Memory Column-
Store Database Systems, 2013.

[88] Hannes Rauhe, Jonathan Dees, Kai-Uwe Sattler, and Franz Färber. Multi-level
Parallel Query Execution Framework for CPU and GPU. Proc. of ADBIS Con-
ference, 2013.

[89] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. Syn-
opSys: Large Graph Analytics in the SAP HANA Database Through Summariza-
tion. In Proc. of GRADES Workshop, 2013.

[90] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. The
Graph Story of the SAP HANA Database. BTW, 2013.

[91] Larry Seiler, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, Pat Han-
rahan, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, and Jeremy Sugerman. Larrabee: a many-
core x86 architecture for visual computing. In Proc. of ACM SIGGRAPH Confer-
ence, volume 27, page 1. ACM Press, August 2008.

[92] Vishal Sikka, Franz Färber, Wolfgang Lehner, and Sang Kyun Cha. Efficient
transaction processing in SAP HANA database: the end of a column store myth.
Proceedings of the ACM SIGMOD, 2012.

[93] Steve Rennich (NVIDIA). Streams And Concurrency Webi-
nar. http://developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf, 2012.

109

http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

BIBLIOGRAPHY

[94] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel R. Madden, and Eliza-
beth O’Neil. C-Store: A Column-oriented DBMS. In Proc. of VLDB Conference,
pages 553–564. VLDB Endowment, 2005.

[95] Stuart P. Lloyd. Least squares quantization in PCM. Bell Laboratories Mem-
orandum, 1957. also published in IEEE Trans. Inform. Theory, vol. IT-28, pp.
129-137.

[96] George Teodoro, Tahsin Kurc, Jun Kong, Lee Cooper, and Joel Saltz. Comparative
Performance Analysis of Intel Xeon Phi, GPU, and CPU, November 2013.

[97] Jens Teubner and Rene Mueller. How soccer players would do stream joins. In
Proc. of ACM SIGMOD Conference, page 625, New York, New York, USA, June
2011. ACM Press.

[98] The C-Store Project Group. Homepage of C-Store. https://db.csail.mit.edu/
projects/cstore/.

[99] The clang community. Homepage of clang: a C language family frontend for
LLVM. http://clang.llvm.org/.

[100] Transaction Processing Performance Council. Homepage of the TPC-H Bench-
mark. http://www.tpc.org/tpch/.

[101] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications
of the ACM, 33(8):103–111, August 1990.

[102] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling
for ETL processes. In Proc. of DOLAP Workshop, pages 14–21, New York, New
York, USA, November 2002. ACM Press.

[103] Thomas Willhalm, Ismail Oukid, Ingo Mueller, and Franz Färber. Vectorizing
Database Column Scans with Complex Predicates. In Proc. of ADMS Workshop,
2013.

[104] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. SIMD-Scan: Ultra Fast in-Memory Table Scan using
on-Chip Vector Processing Units. In Proc. of VLDB Conference, pages 385–394,
Lyon, France, August 2009. ACM.

[105] Guanying Wu and Xubin He. Reducing SSD read latency via NAND flash program
and erase suspension. In USENIX Conference on File and Storage Technologies,
page 10. USENIX Association, February 2012.

[106] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The Yin and Yang of processing
data warehousing queries on GPU devices. In Proc. of VLDB Conference, pages
817–828. VLDB Endowment, August 2013.

110

https://db.csail.mit.edu/projects/cstore/
https://db.csail.mit.edu/projects/cstore/
http://clang.llvm.org/
http://www.tpc.org/tpch/

BIBLIOGRAPHY

[107] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun Zhang.
Statistical learning techniques for costing XML queries. In Proc. of VLDB Con-
ference, pages 289–300. VLDB Endowment, August 2005.

[108] Marcin Zukowski and Peter Boncz. MonetDB/X100-A DBMS In The CPU Cache.
IEEE Data Eng. Bull., 2005.

[109] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proc. of ICDE Conference, pages 59–59. IEEE, April
2006.

111

A. Appendix

A.1. Hardware Used for Evaluations

The experiments for this thesis were conducted on different machines. The machines
with their CPUs and GPUs are listed here (bandwidth given in the form: from device
to host / host to device):

Machine alias CPU GPU Bandwidth pageable Bandwidth pinned

Tesla C1060 2 x E5520 Tesla C1060 5.2 / 4.1 GB/s n.a.

Z600 2 x X5650 Tesla C2050 2.5 / 3.2 GB/s 7.4 / 8.0 GB/s

K10 2 x E5-2690 Tesla K10 2.3 / 2.8 GB/s 11.2 / 12.2 GB/s

K20 2 x E5-2665 Tesla K20m 1.6 / 2.0 GB/s 5.7 / 6.4 GB/s

The bandwidth has been measured with the bandwidth test tool that is part of the
CUDA toolkit. The value is not only depending on the GPU but also on the memory bus
and the PCIe bus. Therefore,the same graphics card might behave differently in another
system. In general we tried to use the newest available hardware for our experiments. In
case of the string processing experiment, we waited for the K10 machine to be available,
because it is the only machine with a working PCIe 3 connection and we were interested
in fast transfers. The following table lists which machine was used for which experiment.

Section Experiment Tesla C1060 Z600 K10 K20

3.4.1 Kernel Overhead/Bandwidth X

3.4.2 Single Core X

3.4.3 Streaming X

3.4.4 Matrix Multiplication X

3.4.5 String Processing X

4.1.2 K-Means UDF X

4.2.3 Maximum Entropy X

4.3 Dictionary Merge X

5.5 Query Execution X

6.4 Scheduling/Index Scan X

6.4 Scheduling/Sort X

113

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet.

An der inhaltlich-materiellen Erstellung der vorliegenden Arbeit waren keine weiteren
Personen beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Ver-
mittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in An-
spruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leis-
tungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
einer Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung
als Täuschungsversuch bewertet wird und gemäß §7 Abs. 10 der Promotionsordnung den
Abbruch des Promotionsverfahrens zur Folge hat.

(Ort, Datum) (Unterschrift)

115

	Introduction
	Motivation
	Contributions
	Outline

	Main Memory Database Management Systems
	OLTP and OLAP
	Main Memory DBMS for a Mixed Workload
	SAP HANA Architecture
	Columnar Storage
	Compression
	Main and Delta Storage

	Related Work: Using Co-processors in a DBMS

	GPUs as Co-Processors
	SIMD Processing and Beyond
	Flynn's Taxonomy
	Hierarchy of Parallelism—the GPU Architecture
	Programming Model for GPU Parallelsim

	Communication between CPU and GPU
	Software Frameworks and Libraries
	Micro-Benchmarks
	Memory Bandwidth and Kernel Overhead
	Single Core Performance
	Streaming
	Matrix Multiplication
	String Processing

	DBMS Functionality on GPUs
	Integrating the GPU for Static Tasks into the DBMS
	Re-Designing Dynamic Tasks for Co-Processors
	Scheduling

	Integrating Static GPU Tasks Into a DBMS
	GPU Utilization with Application Logic
	External Functions in IBM DB2
	K-Means as UDF on the GPU
	Implementation
	Evaluation
	Conclusion

	GPU-assisted Query Optimization
	Selectivity Estimations and Join Paths
	Maximum Entropy for Selectivity Estimations
	Implementation of the the Newton Method
	Evaluation
	Conclusion

	The Dictionary Merge on the GPU: Merging Two Sorted Lists
	Implementation
	Evaluation
	Conclusion

	Related Work

	Query Execution on GPUs—A Dynamic Task
	In General: Using GPUs for data-intensive problems
	JIT Compilation—a New Approach suited for the GPU
	A Model for Parallel Query Execution
	Extending the Model for GPU Execution
	Concrete Example
	Limitations of the GPU Execution

	Evaluation
	Details on Data Structures
	Test System and Test Data
	GPU and CPU Performance
	Number of Workgroups and Threads
	The Overhead for Using the GPU

	Related Work
	Conclusion

	Automatically Choosing the Processing Unit
	Motivation
	Operator Model
	Base Model
	Restrictions

	Decision Model
	Problem Definition
	Training and Execution Phase
	Model Deployment

	Evaluation
	Use Cases for Co-Processing in DBMS
	Implementation and Test Setup
	Model Validation
	Model Improvement

	Related Work
	Conclusions

	Conclusion
	Bibliography
	Appendix
	Hardware Used for Evaluations

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 1
 Seitengröße: identisch wie Seite 1

 Blanks
 Always
 1
 1
 1
 690
 251

 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

